Размер шрифта
-
+

Энциклопедия финансового риск-менеджмента - стр. 33

Пример 1.54. Инвестор считает, что реализуемая доходность его портфеля облигаций за 6 месяцев имеет нормальное распределение с математическим ожиданием 7 % и стандартным отклонением 4 %.

Вероятность того, что реализуемая доходность окажется:



4. Если случайная величина ξ распределена нормально с параметрами (a, S), то случайная величина



распределена нормально с параметрами (0, 1), т. е. имеет стандартное нормальное распределение.





Пример 1.55. Менеджер считает, что стоимость управляемого им портфеля облигаций распределена нормально с математическим ожиданием 10 млн долл. и стандартным отклонением 2 млн долл. Его интересует, какова вероятность, что стоимость портфеля окажется между 6 млн и 11 млн долл.

В данном случае



Пример 1.56. Предположим, что в условиях примера 1.55 менеджер хочет найти доверительный интервал для стоимости управляемого им портфеля с надежностью 95 %. Иными словами, требуется найти интервал



Тогда Ф(z) = 0,025. С помощью табл. 1.1 найдем значение z = 1,96. Значит, y = z · S = 1,96 · 2 млн долл. = 3,92 млн долл.

Искомый доверительный интервал: (6,08 млн долл.; 13,92 млн долл.).



1.22.4. Логарифмически нормальное (логнормальное) распределение

Говорят, что положительная случайная величина ξ распределена логнормально (lognormal distribution), если ln ξ имеет нормальное распределение вероятностей. Таким образом, плотность логнормального распределения имеет вид:



График плотности логнормального распределения приведен на рис. 1.25.

Свойства логнормального распределения

1. Логнормальное распределение обладает правосторонней асимметрией (positively skewed), а при малых значениях S = σ(lnξ) близко к нормальному распределению.

2. Если случайная величина ξ имеет логнормальное распределение с параметрами а и S, то





Пример 1.57. Будем считать, что доходность 10-летних облигаций с нулевыми купонами имеет логнормальное распределение с параметрами a = -2,70; S = 0,30.



3. Если две случайные величины распределены логнормально, то их произведение также имеет логнормальное распределение.

1.22.5. Распределение х>2 (хи-квадрат)

Говорят, что случайная величина z имеет распределение х>2 (chi-squared distribution) с n степенями свободы, если она представима в виде суммы n квадратов взаимно независимых величин со стандартными нормальными распределениями.

Свойства распределения X>2



Пример 1.58. Даны 10 дневных наблюдений доходности 30-летних казначейских облигаций с нулевым купоном:



Если допустить, что доходность распределена нормально, то оценки математического ожидания и дисперсии доходности можно найти следующим образом:




Доверительный интервал для дисперсии доходности с надежностью 96 % можно найти из условия


1.22.6. Распределение Стьюдента

Распределение вероятностей случайной величины



называется распределением Стьюдента (Student’s t-distribution) с n степенями свободы, если случайные величины ξ и η независимы, ξ имеет стандартное нормальное распределение, а η – распределение х>2 с n степенями свободы.

Свойства распределения Стьюдента

1. Если случайная величина t имеет распределение Стьюдента с n степенями свободы, то



Асимметрия распределения Стьюдента равна 0.

2. При возрастании числа степеней свободы распределение Стьюдента стремится к стандартному нормальному распределению. При этом распределение Стьюдента имеет более тяжелые ветви, чем стандартное нормальное распределение. На рис. 1.26 изображены графики плотности стандартного нормального распределения и распределения Стьюдента с тремя степенями свободы.

Страница 33