Размер шрифта
-
+

Энциклопедия финансового риск-менеджмента - стр. 32

Эксцессом (kurtosis) распределения вероятностей случайной величины ξ называется число



При одном и том же стандартном отклонении чем больше эксцесс, тем «тяжелее» ветви плотности распределения вероятностей случайной величины (рис. 1.23).



Распределение вероятностей с большим эксцессом называют распределением с «тяжелыми» ветвями (leptokurtic/fat-tailed distribution).

Медианой (median) распределения случайной величины ξ называется число Ме, удовлетворяющее условию:



Модой (mode) распределения случайной величины ξ называется любая точка локального максимума плотности распределения P(x) этой случайной величины.

Распределение с одной модой Мо называется унимодальным (unimodal).

Свойства унимодальных распределений

Если даны две случайные величины ξ>1 и ξ>2, то можно рассмотреть двумерную случайную величину



Функция Pξ(x>1, x>2), удовлетворяющая равенству (1.54), называется плотностью совместного распределения случайных величин ξ>1 и ξ>2.




Все основные свойства числовых характеристик, рассмотренные нами для дискретных случайных величин, сохраняются и в непрерывном случае.

1.22. Важнейшие виды распределений случайных величин

1.22.1. Биномиальное распределение

Дискретная случайная величина ξ имеет биномиальное распределение (binomial distribution) B(n, р), если она принимает значения: 0, 1, 2, …, n, причем


Свойства биноминального распределения

Пример 1.52. Рассмотрим портфель из 20 облигаций, выпущенных различными эмитентами с одним и тем же кредитным рейтингом. Предположим, что дефолты по облигациям независимы, а вероятность дефолта по любой облигации в течение одного года равна 10 %.

Обозначим через ξ число дефолтов по данному портфелю в течение одного года. Случайная величина ξ имеет биномиальное распределение B(20, 0,1), следовательно, ожидаемое число дефолтов по портфелю облигаций в течение одного года составит:



Вероятность того, что в течение года произойдет два дефолта, находится следующим образом:



Вероятность, что в течение года произойдет 5 дефолтов, составит величину:


1.22.2. Распределение Пуассона

Случайная величина ξ, принимающая значения 0, 1, 2, …, k, …, имеет распределение Пуассона (Poisson's distribution) с параметром λ > 0, если


Свойства распределения Пуассона

Пример 1.53. Число дефолтов по портфелю облигаций в течение одного года имеет распределение Пуассона. Ожидаемое число дефолтов равно 8.

Вероятность того, что в течение года произойдет ровно два дефолта, можно найти по следующей формуле:


1.22.3. Нормальное распределение

Говорят, что случайная величина ξ распределена нормально (normal distribution), если ее плотность распределения вероятностей имеет вид:



График плотности нормального распределения приведен на рис. 1.24.


Основные свойства нормального распределения

1. Если случайная величина ξ распределена нормально с плотностью



2. Плотность нормально распределенной случайной величины симметрична относительно математического ожидания этой случайной величины, т. е. асимметрия a(ξ) = 0.

В частности,



Эксцесс нормального распределения всегда равен 3.

3. Вероятность того, что нормально распределенная случайная величина будет отличаться от своего ожидаемого значения на величину, не превышающую одного, двух или трех ее стандартных отклонений, равна 68,3, 95,5 и 99,75 % соответственно.

Страница 32