Размер шрифта
-
+

Энциклопедия финансового риск-менеджмента - стр. 30

, А>2…., А>i…..

Объединением двух множеств А и В называют множество, обозначаемое А ∪ B, все элементы которого принадлежат хотя бы одному из множеств А и В (рис. 1.16).



Например, если А = {1, 2, 3, 4}, а В = {3, 4, 5, 6}, то А ∪ В = {1, 2, 3, 4, 5, 6}. Точно так же определяется объединение трех, четырех и более множеств. В частности, множество

 – это совокупность всех элементов, принадлежащих хотя бы одному из множеств А>1, А>2…., А>i…..

1.19. Вероятностное пространство

Пусть Ω – некоторое множество. В дальнейшем элементы множества Ω будем называть элементарными событиями, а само множество Ω – пространством элементарных событий.

Набор β подмножеств множества Ω называется σ-алгеброй случайных событий при выполнении следующих трех условий:



Если пространство элементарных событий конечно, т. е. состоит из конечного числа элементарных событий, то в качестве σ-алгебры случайных событий обычно рассматривают набор всех подмножеств этого пространства.

Пример 1.45. Бросается игральная кость. Пространство элементарных событий состоит из 6 событий: выпадение любого целого числа от 1 до 6. Выпадение четного числа является случайным событием, так как состоит из трех элементарных событий: выпадение чисел 2, 4 или 6. Выпадение числа, меньшего 3, также является случайным событием.

Говорят, что на σ-алгебре случайных событий β определена вероятностная мера Р, если каждому случайному событию A ∈ β поставлено в соответствие неотрицательное число Р(А) так, что выполняются следующие условия:




Пример 1.46. Бросаются две одинаковые игральные кости. В данном случае элементарное событие характеризуется следующей парой чисел: числом, выпавшим на первой кости, и числом, выпавшим на второй кости, а пространство элементарных событий состоит из 36 событий:


Основные свойства вероятностной меры


Основные свойства функции распределения случайной величины

1.20. Дискретные случайные величины

Случайная величина ξ называется дискретной случайной величиной (discrete random variable), если она принимает лишь конечное или счетное число различных значений.

Чтобы задать дискретную случайную величину, достаточно указать закон распределения вероятностей этой случайной величины в следующем виде:



т. е. для каждого возможного значения случайной величины ξ задать вероятность этого значения.



Функция распределения вероятностей дискретной случайной величины ξ показана на рис. 1.17.

Основные числовые характеристики дискретной случайной величины ξ определяются следующим образом:


Свойства математического ожидания и дисперсии

Пример 1.48. Дана 10 %-ная облигация с полугодовыми купонами, продающаяся по номиналу, когда до ее погашения остается 20,5 года. Инвестор считает, что доходность к погашению этой облигации через 6 месяцев может принять следующие значения:



Законы распределения вероятностей цены облигации (η) и годовой реализуемой доходности за 6 месяцев (τ) указаны в таблице:



Например, если ξ = 11,0 %, то



Математическое ожидание цены облигации через 6 месяцев и ее дисперсия могут быть найдены следующим образом:



Таким образом, ожидаемое значение реализуемой доходности облигации за 6 месяцев равно 11,96 %, а ее стандартное отклонение составляет 14,81 %.

Закон совместного распределения вероятностей двух случайных величин ξ и η может быть задан следующим образом:

Страница 30