Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний - стр. 18
В сетях млекопитающих, рыб, птиц, растений, клеток и целых экосистем, несмотря на различия их конструкций, образовавшихся в результате эволюции, действуют одни и те же основополагающие принципы и свойства. Будучи выражены в математических терминах, они не только приводят к объяснению происхождения универсальных степенных законов масштабирования с показателями, кратными ¼, но и позволяют получить численные предсказания относительно фундаментальных характеристик этих систем, в том числе, например, размеров самых мелких и самых крупных млекопитающих (землероек и китов), напора крови и частоты пульса в любом сосуде кровеносной системы любого млекопитающего, высоты самого высокого дерева во всех Соединенных Штатах, длительности сна у слонов и мышей или структуры сосудистой системы опухолей[19].
Они же приводят нас к теории роста. Рост можно рассматривать в качестве особого случая явления масштабирования. Взрослый организм – это, по сути дела, результат нелинейного увеличения ребенка; чтобы убедиться в этом, сравните пропорции своего тела с пропорциями младенца. На любом этапе развития рост осуществляется путем распределения метаболической энергии, передаваемой по сетям клеткам уже существующим, для образования новых клеток, из которых составляются новые ткани. Этот процесс можно проанализировать при помощи теории сетей и вывести универсальную численную теорию кривых роста, применимую к любым организмам, в том числе и опухолям. Кривая роста – это попросту график зависимости размеров организма от его возраста. Если у вас есть дети, вы наверняка знакомы с такими кривыми, так как педиатры все время показывают их родителям, чтобы те могли увидеть, как развитие их детей соотносится с уровнями, ожидаемыми для среднестатистического ребенка соответствующего возраста. Теория роста также объясняет один любопытный парадокс, над которым вы, возможно, уже задумывались, а именно тот факт, что мы в какой-то момент перестаем расти, хотя и не перестаем есть. Оказывается, это явление вытекает из сублинейного масштабирования метаболизма и экономии на масштабе, свойственных такой сетевой конструкции. В одной из следующих глав та же парадигма будет применена к росту городов, компаний и экономических систем для разъяснения фундаментального вопроса о происхождении неограниченного роста и возможности его устойчивости.
Поскольку сети определяют скорость подачи в клетки энергии и других ресурсов, они задают темп всех физиологических процессов. Поскольку клетки крупных организмов вынуждены работать систематически медленнее, чем клетки организмов более мелких, темп жизни систематически снижается с ростом размеров. Так, крупные млекопитающие дольше живут, дольше взрослеют и имеют более медленное сердцебиение и клетки, работающие менее интенсивно, чем у мелких млекопитающих, причем степень всех этих различий одинакова и предсказуема. Мелкие создания живут стремительно, а крупные идут по жизни тяжеловесно, но зато более эффективно: вообразите себе суетливо мечущуюся мышку на фоне величественно выступающего слона.
Приняв на вооружение такой образ мыслей, мы перейдем к вопросу о том, как парадигму сетей и масштабирования, успешно укоренившуюся в сфере биологии, можно было бы с пользой применить к аналогичным вопросам динамики, роста и структуры городов и компаний с тем, чтобы разработать аналогичную