Размер шрифта
-
+

Энциклопедия финансового риск-менеджмента - стр. 40

 = max{η>1, η>2, …, η>n} практически совпадает с функцией обобщенного распределения экстремальных значений (при подходящем выборе параметров ξ, μ и σ).

Предположим, что случайная величина M>n = max{η>1, η>2, …, η>n} имеет распределение Фреше, т. е.



Тогда справедливы следующие утверждения:

1. Плотность распределения случайной величины M>n имеет следующий вид (рис. 1.32).



2. Математическое ожидание и дисперсии случайной величины M>n можно найти по формулам:



Параметры ξ, μ, σ можно подобрать на основе статистических данных.

Для измерений экстремальных событий может быть использовано распределение Парето (Pareto distribution), которое определяется функцией:



Для большого класса случайных величин η при достаточно большом пороговом значении u справедливо равенство:



Соотношение (1.85) позволяет оценивать «хвосты» распределений на основе статистических данных.

Литература

1. Барбаумов В. Е., Гладких И. М., Чуйко А. С. Финансовые инвестиции: Учебник. – М.: Финансы и статистика, 2003.

2. Доугерти К. Введение в эконометрику. – М.: ИНФРА-М, 2001.

3. Дуглас Л. Г. Анализ рисков операций с облигациями на рынке ценных бумаг. – М.: Филинъ, 1998.

4. Количественные методы финансового анализа / Под. ред. С. Дж. Брауна, М. П. Крицмена. – М.: ИНФРА-М, 1996.

5. Fabozzi F. J. Fixed income mathematics. 3rd ed. – N.Y.: McGraw-Hill, 1997.

6. Fabozzi F. J. (ed.) Advances in fixed income valuation, modeling and risk management. – Pennsylvania: Associates New Hope, 1997.

II. Производные финансовые инструменты

В. Е. Барбаумов

2.1. Введение

В настоящее время для идентификации и измерения рисков широко используется теория производных финансовых инструментов. Изучение производных финансовых инструментов важно еще и потому, что сами эти инструменты являются источниками рисков как для различных финансовых институтов, так и для финансового рынка в целом. Кроме того, производные финансовые инструменты – одно из важнейших средств хеджирования тех или иных рисков. Именно поэтому данная глава посвящена изучению производных финансовых инструментов.

В главе рассматриваются как простейшие производные финансовые инструменты – форвардные и фьючерсные контракты, свопы, так и более сложные – опционы различных видов и инструменты со встроенными опционами. Основное внимание уделяется методам оценки таких инструментов и основным направлениям их использования.

Важнейшими производными финансовыми инструментами являются классические европейские и американские опционы. Подробно рассматриваются методы оценки таких опционов в случае, когда стоимость исходных активов определяется геометрическим броуновским движением. В частности, приводятся формулы Блэка-Шоулза для оценки европейских опционов и разбирается их использование. Применение классических опционов для хеджирования основных финансовых рисков также рассматривается в данной главе.

В заключительной части главы обосновывается построение биномиальной модели процентной ставки и ее использование для оценки финансовых инструментов, производных от процентных ставок: кэпов, флоров, свопционов и облигаций со встроенными опционами. Кроме того, приводится обзор и других моделей временной структуры процентных ставок.

2.2. Форвардные контракты и их основные характеристики

В настоящее время на развитых финансовых рынках важную роль играют так называемые производные инструменты (derivatives). Простейшим из производных инструментов является форвардный контракт.

Страница 40