Живая математика. Математические рассказы и головоломки - стр. 17
Благодаря ясности, внесенной в эту игру математикой, прежняя лихорадочная страсть в увлечении сейчас совершенно немыслима. Математика создала исчерпывающую теорию игры, теорию, не оставляющую ни одного сомнительного пункта. Исход игры зависит не от каких-либо случайностей, не от находчивости, как в других играх, а от чисто математических факторов, предопределяющих его с безусловной достоверностью».
Обратимся теперь к головоломкам в этой области. Вот несколько разрешимых задач, придуманных изобретателем игры.
22. Первая задача Лойда
Исходя из расположения, показанного на рис. 15, привести шашки в правильный порядок, но со свободным полем в левом верхнем углу (рис. 18).
Рис. 18. К первой задаче Самуэля Лойда
Рис. 19. Ко второй задаче Самуэля Лойда
23. Вторая задача Лойда
Исходя из расположения рис. 15, поверните коробку на четверть оборота и передвигайте шашки до тех пор, пока они не примут расположения рис. 19.
24. Третья задача Лойда
Передвигая шашки согласно правилам игры, превратите коробку в магический квадрат, а именно: разместите шашки так, чтобы сумма чисел была во всех направлениях равна 30.
КРОКЕТ[2]
Крокетным игрокам предлагаю следующие пять задач.
25. Пройти ворота или крокировать?
Крокетные ворота имеют прямоугольную форму. Ширина их вдвое больше диаметра шара. При таких условиях что легче: свободно, не задевая проволоки, пройти с наилучшей позиции ворота или с такого же расстояния крокировать шар?
Рис. 20. Схема игры в крокет
26. Шар и столбик
Толщина крокетного столбика внизу – 6 см. Диаметр шара 10 см. Во сколько раз попасть в шар легче, чем с такого же расстояния заколоться?
27. Пройти ворота или заколоться?
Шар вдвое уже прямоугольных ворот и вдвое шире столбика. Что легче: свободно пройти ворота с наилучшей позиции или с такого же расстояния заколоться?
28. Пройти мышеловку или крокировать?
Ширина прямоугольных ворот втрое больше диаметра шара. Что легче: свободно пройти в наилучшей позиции мышеловку или с такого же расстояния крокировать шар?
29. Непроходимая мышеловка
При каком соотношении между шириной прямоугольных ворот и диаметром шара пройти мышеловку становится невозможным?
РЕШЕНИЯ ГОЛОВОЛОМОК 15–29
15. Для упрощения задачи отложим пока в сторону все
7 двойных косточек: 0–0, 1–1, 2–2 и т. д. Останется 21 косточка, на которых каждое число очков повторяется 6 раз. Например, 4 очка имеется (на одном поле) на следующих 6 косточках:
4-0; 4–1; 4–2; 4–3; 4–5; 4–6.
Итак, каждое число очков повторяется, как мы видим, четное число раз. Ясно, что косточки такого набора можно приставлять одну к другой равными числами очков до исчерпания всего набора. А когда это сделано, когда наши 21 косточка вытянуты в непрерывную цепь, тогда между стыками 0–0,1 – 1, 2–2 и т. д. вдвигаем отложенные 7 двойняшек. После этого все 28 косточек домино оказываются вытянутыми, с соблюдением правил игры, в одну цепь.
16. Легко показать, что цепь из 28 костей домино должна кончаться тем же числом очков, каким она начинается. В самом деле: если бы было не так, то числа очков, оказавшиеся на концах цепи, повторялись бы нечетное число раз (внутри цепи числа очков лежат ведь парами); мы знаем, однако, что в полном наборе костей домино каждое число очков повторяется 8 раз, т. е. четное число раз. Следовательно, сделанное нами допущение о неодинаковом числе очков на концах цепи неправильно: числа очков должны быть одинаковы. (Такого рода рассуждения, как эти, в математике называются «доказательствами от противного».)