Размер шрифта
-
+

Живая математика. Математические рассказы и головоломки - стр. 16

Точно так же возможно, не трогая шашки 1, привести шашку 2 на соседнее место вправо. Затем, не трогая шашек 1 и 2, можно поместить шашки 3 и 4 на их нормальные места: если они случайно не находятся в двух последних вертикальных рядах, то легко привести их в эту область и затем рядом передвижений достичь желаемого результата. Теперь верхняя строка 1, 2, 3, 4 приведена в порядок, и при дальнейших манипуляциях с шашками мы трогать этого ряда не будем. Таким же путем стараемся мы привести в порядок и вторую строку: 5, 6, 7, 8; легко убедиться, что это всегда достижимо. Далее, на пространстве двух рядов необходимо привести в нормальное положение шашки 9 и 13: это тоже всегда возможно. Из всех приведенных в порядок шашек 1, 2, 3, 4, 5, 6, 7, 8, 9 и 13 в дальнейшем ни одной не перемещают; остается небольшой участок в шесть полей, в котором одно свободно, а пять остальных заняты шашками 10, 11, 12, 14, 15 в произвольном порядке.


Рис. 15

Нормальное расположение шашек (положение I)


Рис. 16.

Неразрешимый случай (положение II)

В пределах этого шестиместного участка всегда можно привести на нормальные места шашки 10, 11, 12. Когда это достигнуто, то в последнем ряду шашки 14 и 15 окажутся размещенными либо в нормальном порядке, либо в обратном (рис. 16). Таким путем, который читатели легко могут проверить на деле, мы приходим к следующему результату.

Любое начальное положение может быть приведено к расположению либо рис. 15 (положение I), либо рис. 16 (положение II).

Если некоторое расположение, которое для краткости обозначим буквою S, может быть преобразовано в положение I, то, очевидно, возможно и обратное – перевести положение I в положение S. Ведь все ходы шашек обратимы: если, например, в схеме I мы можем шашку 12 поместить на свободное поле, то можно ход этот тотчас взять обратно противоположными движениями.

Итак, мы имеем две серии расположений таких, что положения одной серии могут быть переведены в нормальное I, а другой серии – в положение II. И, наоборот, из нормального расположения можно получить любое положение первой серии, а из расположения II – любое положение второй серии. Наконец, два любых расположения, принадлежащие к одной и той же серии, могут быть переводимы друг в друга.

Нельзя ли идти дальше и объединить эти два расположения – I и II? Можно строго доказать (не станем входить в подробности), что положения эти не превращаются одно в другое никаким числом ходов. Поэтому все огромное число размещений шашек распадается на две разобщенные серии: 1) на те, которые могут быть переведены в нормальное I: это – положения разрешимые; 2) на те, которые могут быть переведены в положение II и, следовательно, ни при каких обстоятельствах не переводятся в нормальное расположение: это – положения, за разрешение которых назначались огромные премии.


Рис. 17. Шашки не приведены в порядок


Как узнать, принадлежит ли заданное расположение к первой или ко второй серии? Пример разъяснит это.

Рассмотрим расположение, представленное на рис. 17. Первый ряд шашек в порядке, как и второй, за исключением последней шашки (9). Эта шашка занимает место, которое в нормальном расположении принадлежит 8. Шашка 9 стоит, значит, ранее шашки 8: такое упреждение нормального порядка называют «беспорядком». О шашке 9 мы скажем: «Здесь имеет место 1 беспорядок». Рассматривая дальнейшие шашки, обнаруживаем упреждение для шашки 14; она поставлена на три места (шашек 12, 13, 11) ранее своего нормального положения; здесь у нас 3 беспорядка (14 ранее 12; 14 ранее 13; 14 ранее 11). Всего мы насчитали уже 1 + 3=4 беспорядка. Далее, шашка 12 помещена ранее шашки 11, и точно так же шашка 13 – ранее шашки 11. Это дает еще 2 беспорядка. Итого, имеем 6 беспорядков. Подобным образом для каждого расположения устанавливают общее число беспорядков, освободив предварительно последнее место в правом нижнем углу. Если общее число беспорядков, как в рассмотренном случае, четное, то заданное расположение может быть приведено к нормальному конечному; другими словами, оно принадлежит к разрешимым. Если же число беспорядков нечетное, то расположение принадлежит ко второй серии, т. е. к неразрешимым (ноль беспорядков принимается за четное число их).

Страница 16