Сверточные нейросети - стр. 11
2. LeNet-5 (1998): LeNet-5, разработанная Яном Лекуном в 1998 году, занимает особое место в истории сверточных нейронных сетей (CNN), став одной из первых успешных архитектур для распознавания рукописных цифр. Эта модель была создана для решения задачи распознавания цифр на изображениях, что стало актуальным для автоматической обработки почтовых индексов и других сценариев, связанных с распознаванием письменного текста.
Особенностью LeNet-5 было то, что она использовала несколько слоев свертки и пулинга, что позволило ей эффективно извлекать признаки из изображений разной сложности. Сверточные слои позволяли модели автоматически находить локальные шаблоны и признаки в изображениях, такие как грани, углы и текстуры. После этого применялись слои пулинга, которые уменьшали размерность данных, сохраняя важные характеристики и ускоряя вычисления.
Кроме того, в LeNet-5 присутствовали полносвязные слои, которые объединяли выделенные признаки и выполняли классификацию по распознанным цифрам. Эти слои играли решающую роль в формировании окончательных предсказаний модели. Благодаря комбинации сверточных, пулинговых и полносвязных слоев LeNet-5 стала мощным инструментом в задачах распознавания и классификации рукописных цифр, а также стимулировала дальнейшее развитие сверточных архитектур в области компьютерного зрения.
3. AlexNet (2012): AlexNet, представленная в 2012 году Джеффри Хинтоном и его командой, стала революционным событием в области компьютерного зрения и глубокого обучения. Эта архитектура не только продемонстрировала мощь глубоких сверточных нейронных сетей (CNN), но и существенно улучшила результаты в задаче классификации изображений на конкурсе ImageNet.
Основной особенностью AlexNet было использование восеми сверточных и полносвязных слоев, что на тот момент было революционным для области компьютерного зрения. Эта глубокая архитектура позволила модели извлекать более абстрактные признаки из изображений и более эффективно решать сложные задачи классификации. Кроме того, для улучшения производительности использовались графические процессоры (GPU), что значительно ускорило обучение и выполнение модели.
Применение AlexNet привело к значительному улучшению точности классификации изображений на датасете ImageNet, снизив ошибку на несколько процентных пунктов по сравнению с предыдущими методами. Этот успех показал потенциал глубокого обучения и сверточных нейронных сетей в области компьютерного зрения, стимулировав дальнейшее развитие этой области и внедрение CNN в широкий спектр приложений, от распознавания объектов до автономного вождения.
4. VGGNet (2014): VGGNet, представленная в 2014 году, стала важным шагом в развитии сверточных нейронных сетей, предложив новый подход к архитектуре сети. Её создание было обусловлено стремлением к увеличению глубины нейронной сети с целью улучшения её способности к извлечению признаков из изображений. В отличие от предыдущих архитектур, VGGNet предлагала использовать последовательные слои свертки с небольшими ядрами размером 3x3, что значительно упростило структуру сети.
Этот подход позволил строить нейронные сети с большей глубиной, что отразилось на их способности к обучению и классификации изображений. Вместо того чтобы использовать большие ядра свертки, как это делали предыдущие модели, VGGNet сосредотачивалась на использовании множества последовательных слоев с более мелкими ядрами, что давало более гибкий и эффективный способ анализа изображений.