Размер шрифта
-
+

Сверточные нейросети - стр. 10

transforms.Resize((32, 32)),

transforms.ToTensor(),

transforms.Normalize((0.5,), (0.5,))

])

train_set = datasets.ImageFolder(root='./data/train', transform=transform)

train_loader = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)

# Определение архитектуры нейронной сети с Softmax в выходном слое

class SimpleNN(nn.Module):

def __init__(self):

super(SimpleNN, self).__init__()

self.fc1 = nn.Linear(32*32*3, 128)

self.fc2 = nn.Linear(128, 64)

self.fc3 = nn.Linear(64, 10) # 10 классов изображений

self.softmax = nn.Softmax(dim=1) # Применение Softmax по размерности 1 (по классам)

def forward(self, x):

x = torch.flatten(x, 1)

x = torch.relu(self.fc1(x))

x = torch.relu(self.fc2(x))

x = self.fc3(x)

x = self.softmax(x) # Применение Softmax к выходам

return x

# Создание экземпляра модели

model = SimpleNN()

# Обучение модели и применение Softmax в выходном слое

```

В этом примере мы используем нейронную сеть с тремя полносвязными слоями. После двух скрытых слоев мы применяем ReLU в качестве функции активации, а в выходном слое – Softmax. Softmax преобразует выходные значения нейронов в вероятности для каждого класса, суммирующиеся до 1. Это позволяет нам интерпретировать выход модели как вероятности принадлежности к каждому классу, что особенно полезно в задачах многоклассовой классификации.

Эти функции активации важны для эффективной работы нейронных сетей, позволяя им адаптироваться к сложным структурам данных и делать точные предсказания в различных задачах машинного обучения и компьютерного зрения. Комбинация этих функций с другими компонентами нейронных сетей обеспечивает их способность анализировать и извлекать полезные признаки из данных, что делает их мощным инструментом для решения разнообразных задач.


Развитие архитектуры CNN

Сверточные нейронные сети (CNN) являются ключевым инструментом в обработке данных с сетчатой структурой, таких как изображения. Их развитие прошло через несколько этапов, начиная с ранних моделей, вдохновленных биологическими системами, и заканчивая современными архитектурами, обладающими высокой эффективностью и точностью.

1. Ранние модели: Неокогнитрон, предложенный Кунихико Фукусимой в 1980 году, представляет собой важный момент в истории развития сверточных нейронных сетей (CNN). Эта модель была вдохновлена структурой и функционированием зрительной коры головного мозга у животных, где нейроны отвечают за обнаружение и выделение определенных признаков в изображениях. Фукусима ввел ключевые концепции, которые легли в основу сверточных сетей, такие как свертка и пулинг.

Сверточная операция, предложенная Фукусимой, позволяла модели обрабатывать изображения, выделяя локальные признаки через прохождение окна (ядра) по входным данным и выполнение умножения на веса. Пулинг, или субдискретизация, в свою очередь, уменьшала размерность данных, сохраняя основные характеристики, что делало модель устойчивой к небольшим трансформациям изображений.

Хотя неокогнитрон сам по себе не обладал мощностью современных CNN и в основном использовался в контексте исследований, его идеи и методы стали отправной точкой для создания более сложных и эффективных архитектур. Этот вклад Фукусимы в мир нейронных сетей сделал возможным развитие сверточных моделей, которые сегодня успешно применяются в широком спектре задач компьютерного зрения, начиная от распознавания объектов до анализа медицинских изображений.

Страница 10