Размер шрифта
-
+

Со спичками не шутят - стр. 11


Раздел В. Площади фигур.

Примем за единицу длины – длину одной спички. Тогда площадь квадрата, сложенного из 4 спичек, будет составлять одну условную квадратную единицу (у. кв. ед.). Надеемся, что читатель обладает знаниями о площадях плоских фигур в объёме средней школы и ему не составит труда применить простейшие формулы для вычисления площади прямоугольника, параллелограмма, ромба, трапеции, правильных многоугольников или фигур составленных из этих простейших.


2-103. На рисунке изображен четырёхугольник из 6 спичек, площадь которого вдвое больше площади квадрата со стороной, равной одной спичке. Задача состоит в том, чтобы изменить форму четырёхугольника, не изменяя его периметра, так, чтобы площадь уменьшилась:

а) вдвое; б) вчетверо.



2-104. Из 6 спичек сложены прямоугольник и равносторонний треугольник. Периметры этих фигур одинаковы, а у какой больше площадь?



2-105. Из 6 спичек можно составить различные фигуры. Некоторые из них изображены на предыдущем рисунке. Спрашивается, у какой фигуры, составленной из 6 спичек, самая большая площадь?



2-106. Из 8 спичек можно составить ещё больше различных замкнутых фигур. Некоторые из них представлены на рисунке. Площади фигур различны. Сложите из 8 спичек фигуру с наибольшей площадью.



2-107. С помощью 4 спичек можно построить квадрат площадью 1 у. кв. ед. Сколько спичек потребуется, чтобы построить фигуру, имеющую площадь не менее 10 у. кв. ед.?


2-108. Дано 12 спичек. Требуется сложить фигуру, имеющую площадь 3 у. кв. ед. (Исключим простейший случай, показанный на рисунке к задаче 2-37).


2-109. Из 12 спичек можно сложить фигуру площадью 9 у. кв. ед. Переложив 8 спичек, уменьшите площадь на 4 у. кв. ед.



2-110. Постройте из 12 спичек фигуру площадью ровно 4 у. кв. ед.


2-111. Из 20 спичек составлены два прямоугольника: один из 14 спичек, а другой – из 6. Ясно, что площадь второго прямоугольника в 3 раза меньше площади первого. Сломайте данные фигуры и составьте новые, снова из 14 и из 6 спичек, причём с тем же отношением площадей.



2-112. Площадь прямоугольника из 14 спичек в 3 раза больше площади прямоугольника, составленного из 6 спичек. Теперь возьмите 1 спичку в большей группе, переложите её в меньшую и с помощью 7 и 13 спичек ограничьте снова две фигуры, из которых площадь одной была бы ровно в 3 раза больше площади другой.

2-113.

Соотношение площадей фигур 1:3. Теперь возьмите 1 спичку в большей группе, переложите её в меньшую, и постройте новые фигуры с тем же соотношением площадей. Только сделайте это так, чтобы 12 спичек из первоначального расположения остались на своих местах.



2-114. Примем за среднюю длину спички 5 сантиметров. Сколько потребуется спичек, чтобы выложить равными квадратами со стороной в одну спичку один квадратный метр?


Раздел Г. Деление фигуры на заданные части и разное.


2-115. Данную фигуру разделите на 4 одинаковые части с помощью 5 спичек.



2-116. Фигуру, составленную из 16 спичек, разделите спичками на две одинаковые части.



2-117. С помощью 7 спичек, разделите фигуру на 3 одинаковые части.



2-118. Данную фигуру (рис. ниже слева) разделите на 4 одинаковые части с помощью 8 спичек.



2-119. Квадрат ограничивают 16 спичек (рис. выше справа). Требуется разделить его на 4 фигуры площадью по 4 у. кв. ед. каждая с помощью 8, 10, 12 спичек (три задания). Разумеется, нельзя класть две спички на одну и ту же сторону. Труднее выполнить условие, используя 11 спичек (четвертое задание).

Страница 11