Рынок облигаций. Анализ и стратегии - стр. 15
24. Что такое риск риска?
25. Объясните, чем отличается вторичный рынок обыкновенных акций от вторичного рынка облигаций.
26. Какова задача инноваций, перераспределяющих ценовые риски?
Глава 2. ЦЕНООБРАЗОВАНИЕ ОБЛИГАЦИЙ
В этой главе читателю будут представлены сведения:
• о временно́й стоимости денег;
• о способах вычисления цены облигации;
• о том, что для установления цены облигации необходимо определить размер предполагаемых денежных потоков и величину доходности, с помощью которой должны быть дисконтированы предполагаемые денежные потоки;
• о том, почему цена облигации меняется в направлении, противоположном изменению требуемой доходности;
• о выпуклой кривой, выражающей соотношение между ценой и доходностью безопционной облигации;
• о взаимосвязи купонной ставки, требуемой доходности и цены;
• об изменении цены облигации по мере приближения к дате погашения;
• о причинах изменения цены облигации;
• о сложностях, связанных с ценообразованием облигаций;
• о ценообразовании облигаций с плавающей купонной ставкой и с обратной плавающей купонной ставкой;
• о понятии накопленного купонного дохода и котировках цен на облигации.
В этой главе мы объясняем механизм ценообразования облигаций, в следующей – описываем способы измерения доходности. Понимание моделей ценообразования, а также мер доходности невозможно без уяснения основополагающего принципа функционирования финансового рынка, а именно – временно́й стоимости денег. Мы, таким образом, начинаем главу с объяснения этого базового положения.
ВРЕМЕННАЯ СТОИМОСТЬ ДЕНЕГ
Понятие временно́й стоимости денег – важнейший принцип, лежащий в основе анализа любого финансового инструмента. Деньги обладают временно́й стоимостью, поскольку могут быть инвестированы на некий срок под некий процент.
Будущая стоимость
Определить будущую стоимость любой суммы денег, инвестированной в настоящий момент, можно по формуле:
где:
n – число периодов;
P>n – будущая стоимость через n периодов, считая с настоящего момента (в долларах);
P>0 – номинальная стоимость (в долларах);
r – процентная ставка на один период (в десятичных дробях).
Выражение (1 + r)>n представляет будущую стоимость одного доллара, инвестированного в настоящий момент на n периодов под процентную ставку r.
Предположим, что менеджер пенсионного фонда инвестирует $10 млн в финансовый инструмент, который в течение шести лет должен приносить 9,2 % ежегодно. Будущая стоимость $10 млн будет равна $16 956 500, поскольку:
Из приведенного примера видно, как подсчитывать будущую стоимость в случае, когда процент выплачивается один раз в год (т. е. величина периода равна числу лет). Если процент выплачивается чаще, чем раз в год, то как величина процентной ставки, так и число периодов, используемых для расчета будущей стоимости, должны быть уточнены следующим образом:
Допустим, что портфельный менеджер из первого примера инвестирует свои $10 млн в финансовый инструмент, который в течение шести лет должен приносить 9,2 % ежегодно, однако процентные выплаты осуществляются раз в шесть месяцев (т. е. дважды в год). В этом случае:
и
Обратите внимание на то, что будущая стоимость $10 млн в ситуации, когда процент выплачивается раз в полгода ($17 154 600), больше, чем в случае процентных выплат раз в год ($16 956 500), несмотря на то что обе инвестиции осуществляются под один и тот же годовой процент. Более высокая будущая стоимость суммы, вложенной под процент, выплачиваемый раз в полгода, отражает более выгодные возможности реинвестирования получаемых процентных платежей.