Основы эконометрики в среде GRETL. Учебное пособие - стр. 7
Данный тест можно проводить несколькими способами в GRETL, рассмотрим каждый из них на примере рассматриваемой модели.
Сформулируем гипотезу о совместной незначимости регрессоров
не так
Результаты оценивания регрессии без ограничения приведены на рис. 5.1, сумма квадратов остатков данной модели
Рис. 5.1
Оценим регрессию с ограничением, то есть исключим из нее переменные с коэффициентами, подозрительными на совместную незначимость. Для этого можно, очевидно, по новой оценить модель, но можно и в существующей модели выбрать пункт меню Правка – Изменить модель и удалить регрессоры с коэффициентами, подозрительными на совместную незначимость. Результат оценивания модели с ограничением представлен на рис. 5.2.
Сумма квадратов остатков в модели с ограничением
Далее рассчитаем значение F-статистики:
Критическое значение статистики составляет
Рис. 5.2
Тест на совместную незначимость коэффициентов также можно провести автоматически. Для этого, после того как было оценено исходное уравнение, в меню окна результатов нужно выбрать Тесты – Избыточные переменные.
Рис. 5.3
После этого в меню можно выбрать одну из опций оценивания: оценить сокращенную модель (аналог того теста, который был показан выше) или проверить избыточность переменных с использованием теста Вальда [9].
Результат оценивания с использованием сокращенной модели представлен на рис. 5.4.
Рис. 5.4
При данном методе проверки также рассчитывается F-статистика и ее значение совпадает с тем, что было получено вручную. При этом приводится оцененный вариант короткой модели (модели с ограничением). Нулевая гипотеза состоит в том, что указанные на этапе тестирования переменные
Аналогично можно провести тест на избыточные переменные, используя тест Вальда (рис. 5.5).
Рис. 5.5
Результаты тестирования полностью совпадают с предыдущими вариантами теста.
6. Проверка правильности спецификации модели (RESET test)
Для проверки правильности спецификации линейной регрессионной модели используется RESET-тест. Он позволяет определить, помогает ли нелинейная комбинация оцененного значения зависимой переменной лучше объяснить изменения самой зависимой переменной. Если качество объяснения при этом улучшается, значит, модель специфицирована неправильно [9].
Проведем RESET-тест для модели
то есть проверим правильность спецификации этой модели [файл с данными wage2.gdt]. Оценим предложенную регрессию и сохраним оцененные значения зависимой переменной. Для этого в окне с результатами оценки выберем пункт меню