(Не)совершенная случайность. Как случай управляет нашей жизнью - стр. 32
На современном языке правило Кардано звучит следующим образом: «Предположим, случайный процесс имеет множество одинаково вероятных исходов: некоторые из них благоприятны (то есть ведут к выигрышу), некоторые неблагоприятны (то есть проигрышные). Вероятность благоприятного исхода равна доле благоприятных исходов. Множество всех возможных исходов образует пространство элементарных событий». Другими словами, брошенный кубик опускается на любую из шести своих сторон, и эти шесть исходов формируют пространство элементарных событий. Если вы ставите пари на, скажем, два из них, ваши шансы выиграть равны 2 из 6.
Скажем пару слов о предположении, будто все исходы в одинаковой степени вероятны. Очевидно, что это не всегда так. Пространство элементарных событий в плане веса Опры Уинфри в зрелом возрасте вмещает в себя (так уж сложилось исторически) от 66 до 107 кг, и с течением времени не все весовые промежутки оказались в одинаковой степени вероятными[66]. То осложнение, что разные возможности имеют разные вероятности, можно учесть, соотнеся соответствующие шансы с каждым возможным исходом, то есть произвести точный подсчет. Однако пока что рассмотрим примеры, в которых все исходы в одинаковой степени вероятны – именно их и анализировал в своей работе Кардано.
Эффективность правила Кардано неразрывно связана с некоторыми тонкостями. Одна из них заключается в значении термина «исходы». Уже в XVIII в. известный французский математик Жан Лерон Д’Аламбер, автор ряда работ в области теории вероятностей, допустил неверное употребление этого понятия, когда анализировал процесс подбрасывания двух монет[67]. Число орлов, которые выпадают при этом, может равняться 0, 1 или 2. Поскольку получается три исхода, Д’Аламбер решил, что шансы каждого равны 1 из 3. Однако он ошибся.
Одним из серьезнейших недостатков работы Кардано было то, что он не предпринял систематического анализа разных способов, путем которых ряд исходов, таких как подбрасывание монет, могут произойти. Как мы увидим в следующей главе, этого анализа не сделал никто вплоть до следующего столетия. В то время как такие события, как подбрасывания двух монет, не отличаются сложностью и к ним вполне применимы методы Кардано. Ключевым моментом является понимание того, что возможные исходы подбрасывания монет – это данные, описывающие то, как монеты падают, а не общее количество орлов, вычисленное исходя из этих данных, как заключает Д’Аламбер. Другими словами, нам следует рассматривать не 0, 1 или 2 орла в качестве возможных исходов, а скорее последовательности: (орел, орел), (орел, решка), (решка, орел) и (решка, решка). Эти 4 возможных комбинации и составляют пространство элементарных событий.
Далее, если следовать трактату Кардано, следует рассортировать исходы, отметив число орлов, полученное в каждом исходе. Только 1 из 4 исходов – (орел, орел) – дает 2 орла. Таким образом, только исход (решка, решка) дает 0 орлов. Если нам нужен 1 орел, то 2 из всех исходов будут благоприятными: (орел, решка) и (решка, орел). Итак, метод Кардано доказывает ошибочность утверждений Д’Аламбера: шансы равны 25 % для 0 или 2 орлов, но 50 % для 1 орла. Поставь Кардано свои наличные на 1 орла как 2 к 1, он бы проиграл только в половине случаев, но утроил бы свою сумму в другой половине. Неплохая возможность для парня того времени, пытающегося наскрести на учебу, впрочем, как и в наше время, если бы только представилась такая возможность.