Размер шрифта
-
+

Наука Плоского мира. Книга 2. Глобус - стр. 26

Когда дело касается ДНК, важнейший вопрос заключается не в этом огромном пространстве всех возможных последовательностей. Почти все они не подходят какому-либо организму, пусть даже мертвому. Что нам действительно нужно рассмотреть, это «жизнеспособное ДНК-пространство», то есть пространство всех цепочек ДНК, которые могут принадлежать жизнеспособным организмам. Это невероятно сложная, но очень маленькая часть ДНК-пространства, и нам не известно, что она из себя представляет. Мы понятия не имеем, как можно рассмотреть гипотетическую последовательность ДНК и определить, подходит ли она для жизнеспособного организма или нет.

Та же проблема возникает в отношении Б-пространства, но здесь одна особенность. Грамотный человек, взглянув на последовательность букв и пробелов, может определить, содержит ли она историю или нет; он знает, как «прочитать» код и понять заключенный в нем смысл, если владеет языком, на котором тот написан. Он даже может попытаться решить, хорошая она или плохая. Однако мы не знаем, как развить эту способность для компьютеров. Правила, которыми руководствуется наш разум, чтобы распознавать истории, заложены в сети нервных клеток в наших мозгах. Никому еще не удавалось эти правила выразить. Мы не знаем, как охарактеризовать параметры читаемых книг в Б-пространстве.

В случае с ДНК проблема усугубляется еще и тем, что нет никакого определенного правила, которое «переводило» бы код ДНК в организм. Раньше биологи считали, что такой должен существовать, и возлагали большие надежды на изучение этого «языка». Тогда ДНК реального (потенциального) организма представляла бы собой закодированную последовательность, сообщавшую связную историю о биологическом развитии, а все остальные последовательности были бы просто тарабарщиной. В действительности же биологи предполагали, что смогут посмотреть на цепочку ДНК тигра и увидеть в ней фрагменты, отвечающие за полоски, когти и так далее.

Это было довольно оптимистично. На данный момент мы можем увидеть кусок ДНК, отвечающий за белки, из которого сделаны когти, или кусок, отвечающий за оранжевые, черные и белые пигменты, которые окрашивают шерсть полосками – но все это очень далеко от нашего понимания истории ДНК. Сейчас становится ясно, что в развитии организма также участвуют многие факторы, не имеющие отношения к генетике, поэтому «языка», который переводил бы ДНК в живые создания, не может существовать в принципе. К примеру, ДНК тигра превращается в тигренка только при наличии яйцеклетки матери. При такой же ДНК и яйцеклетке мангуста никакого тигра не получится.

Хотя, возможно, это лишь техническая проблема: что для каждого кода ДНК существует уникальный вид материнского организма, который превращает его в живое создание, поэтому форма этого создания все же заложена в коде. Но теоретически, по крайней мере, один и тот же код ДНК может создать два абсолютно разных организма. Пример этого мы приводим в книге «Гибель хаоса», в которой развивающийся организм впервые «видит», в чреве какой матери находится, а затем выбирает путь развития в зависимости от увиденного.


Гуру сложных задач Стюарт Кауффман поставил эту проблему еще на один уровень выше. Он указывает, что если в физике мы можем предопределить фазовое пространство системы, то в биологии этого никогда не будет возможным. Биологические системы более креативны, чем физические: организация материи внутри живых созданий имеет иную качественную природу, чем в неорганических материях. В частности, организмы способны эволюционировать, после чего, как правило, они становятся еще более сложными. Например, рыбоподобные предки людей были гораздо проще, чем мы. (Мы не устанавливали мер сложности, но это утверждение верно в случаях с большинством таких разумных мер, поэтому давайте не будем углубляться в понятия.) Эволюция

Страница 26