Наука Плоского мира. Книга 2. Глобус - стр. 28
Есть в физике и еще одна проблема. Например, то 6N-мерное фазовое пространство в термодинамике довольно велико. Оно включает в себя состояния, не относящиеся к физике. Из-за странностей математики законы движения упругих сфер не описывают того, что происходит при одновременном столкновении трех и более из них. Поэтому мы вынуждены исключить из этого простого и красивого 6N-мерного пространства все возможные условия, при которых происходит тройное столкновение где бы то ни было – в будущем или прошлом. Об этих условиях нам известны четыре факта. Они случаются очень редко. Они могут случаться. Они образуют чрезвычайно сложное облако точек в фазовом пространстве. И наконец, решительно невозможно определить на практике, можно ли исключить заданные условия или нет. Если бы эти не относящиеся к физике состояния были хоть чуть более распространены, то предопределить фазовое пространство в термодинамике было бы так же трудно, как и в биосфере. Но они являются лишь незримо малой долей, и мы можем позволить себе их игнорировать.
Тем не менее определенный шанс приблизиться к предопределению фазового пространства биосферы существует. Пусть мы не умеем предопределять пространство всех возможных организмов, зато нам по силам взглянуть на любой конкретный организм и, по крайней мере, теоретически сказать, какие потенциальные изменения могут с ним произойти. Это называется пространством смежных возможностей, то есть локальным фазовым пространством. Тогда инновация становится процессом расширения смежных возможностей. Это вполне разумно и привычно. Но, что более спорно, Кауффман предполагает захватывающую вероятность того, что могут существовать общие законы, которые регулируют подобные расширения и совершенно противоположные известному второму закону термодинамики. На самом деле второй закон гласит, что термодинамические системы упрощаются с течением времени, и все наиболее интересные структуры «размываются» и исчезают. Согласно предположению Кауффмана, напротив, биосфера расширяется в пространстве смежных возможностей с максимальной скоростью, при которой сохраняется ее биологическая система. В биологии инновации происходят максимально быстро.
В более общем смысле Кауффман распространяет эту идею на все системы, состоящие из «автономных агентов». Автономный агент представляет собой обобщенную жизненную форму, определяемую двумя свойствами: он может размножаться и способен вынести как минимум один термодинамический рабочий цикл. Рабочий цикл проходит за время, когда система выполняет работу и возвращается в исходное положение, готовая проделать то же самое. Иными словами, система питает энергию из окружающей среды и трансформирует ее в работу, причем таким образом, чтобы в конце цикла возвращаться в свое исходное состояние.
Человек – это автономный агент. Как и тигр. А огонь – нет: он размножается, распространяясь на ближайшие горючие материалы, но не выполняет рабочий цикл. Он превращает химическую энергию в огонь, но, как только что-либо сгорает, оно не может сгореть во второй раз.
Эта теория автономных агентов вписывается в сам контекст фазовых пространств. Без этого понятия ее даже нельзя описать. И в этой теории мы видим первую возможность общего понимания принципов, как и зачем организмы усложняют себя. Мы начинаем определять лишь то, что заставляет жизненные формы вести себя совсем не так рутинно, как им предписано вторым законом термодинамики. Мы рисуем картину вселенной как источника вечно возрастающей сложности и организации, а не наоборот. Мы постигаем, почему живем в интересной, а не скучной вселенной.