Размер шрифта
-
+

Натуральные числа. Этюды, вариации, упражнения - стр. 3

допускает отсутствие предметов, то есть ноль, а счет предполагает, что есть предметы для счета, хотя бы один, а пустоту не считают. Это отступление сделано, чтобы подчеркнуть важность точного определения любого понятия. Измени его и многое меняется. Мы оставляем нулю невысокий статус просто цифры, используемой для позиционной записи чисел, но отказываем ему в высокой чести быть натуральным числом.

Расположение чисел в натуральном ряду позволяет сравнивать их по величине: число, отстоящее дальше от начала натурального ряда, больше числа, стоящего ближе к началу; число, стоящее правее в натуральном ряду чисел, больше любого числа, стоящего левее.

Не будь у нас натурального ряда чисел, мы бы не знали слова упорядочить. Натуральный ряд чисел: 1, 2, 3, 4, 5, 6, 7, 8, … – демонстрирует упорядочение по возрастанию в чистейшем виде и становится эталонным инструментом для упорядочения других объектов. Применяемое в словарях лексикографическое упорядочение слов делается на основе упорядочения алфавита, а алфавит упорядочен с использованием натурального ряда чисел: буква «а» – первая, буква «б» – вторая и так далее.

Натуральные числа – это первые числа, которые придумал человек. Множество натуральных чисел ограничено с одной стороны, у него есть минимальное число – единица, но в сторону увеличения оно бесконечно и этим объясняется тот факт, что до сих пор все свойства этого множества чисел не изучены до конца и многие тайны скрыты в этом стройном ряду чисел.

Числа возникли из потребности счета различных предметов и сравнения количественных показателей различных совокупностей предметов. Число – это абстракция, используемая для количественной характеристики объектов, отвлекаясь от природы этих объектов. Возникновение понятия натурального числа было важнейшим моментом в развитии математики. Появилась возможность изучать сами числа независимо от тех задач, в связи с которыми они возникли. Говоря о натуральных числах, сразу же нужно говорить о действиях или математических операциях с числами. В самой природе построения натурального ряда чисел заложено действие прибавление единицы, так как каждое следующее натуральное число получается из предыдущего увеличением его на единицу. Это первое действие с числами. Если в языке вначале было слово, то в математике вначале была единица. Затем к ней прибавили еще единицу и получили число два. К двойке прибавили единицу – получили три, и процесс устремился в бесконечность. Можно сказать, что единица и операция прибавление единицы породили бесконечно много натуральных чисел. Сложение двух натуральных чисел – это уже следующее действие, которое фактически является неоднократным прибавлением единицы. 5+3=5+1+1+1, то есть прибавить к числу 5 число 3 – это прибавить к пяти три раза единицу. При сложении любых двух натуральных чисел получается тоже натуральное число, действие замкнуто на множестве натуральных чисел. Особо останавливаться на фактах известных любому школьнику не будем, хотя и перепрыгнуть через них не упоминая нельзя, но цель книги – поиски интересного, может быть для кого-то нового материала.

Следующим замкнутым действием на множестве натуральных чисел будет умножение, которое по существу представляет собой дальнейшее развитие действия сложения. Умножение – это многократное сложение одинаковых слагаемых: 3·5=3+3+3+3+3.

Страница 3