Размер шрифта
-
+

Математические игры с дурацкими рисунками: 75¼ простых, но требующих сообразительности игр, в которые можно играть где угодно - стр. 7

Я не смогу изложить исчерпывающую теорию «Точек-клеточек» в одной короткой главе. Однако вас ждет кое-что получше: полное математическое исследование из первых рук, от ученого, который первым опубликовал правила этой игры.

Станете ли вы после прочтения этой главы популярным, сложным и насыщенным математикой ребенком? Трудно сказать. Так что просто читайте и двигайтесь дальше.

КАК ИГРАТЬ

Сколько игроков? Двое.

Что потребуется? Два карандаша разных цветов и поле с рядами точек. Рекомендую поле 6 × 6 точек, но в принципе подойдет любое прямоугольное поле.

В чем цель? Начертить больше квадратов, чем противник.


Какие правила?

1. Поочередно соединяйте соседние точки вертикальными или горизонтальными линиями.



2. Тот, кто дочертит квадрат, набирает одно очко, помечает этот квадрат (например, своими инициалами) и делает следующий ход.



Это правило позволяет вам дочертить целую вереницу квадратов, прежде чем противник дождется своего хода.



3. Играйте, пока не соедините все точки. Кто наберет больше очков, тот и победил.



ЗАМЕТКИ ДЕГУСТАТОРА

Впервые я сыграл в эту игру в детстве, в подвале с полками, набитыми видеокассетами, под аккомпанемент тяжелой поступи динозавров. Нам с братьями не хватало стратегического мышления: в основном мы действовали наобум, стараясь просто не рисовать третью сторону квадратов (чтобы противник не нарисовал четвертую) и волей-неволей рассредоточивали свои линии[7]. Рано или поздно безопасных ходов не оставалось. Тогда-то и наступала самая напряженная стадия игры.



Теперь жертвы становились неизбежными, хотя и не все были равноценными. Некоторые ходы позволяли противнику набрать лишь одно или два очка, а другие – заполонить своими квадратами практически все поле. Я всегда старался жертвовать самыми маленькими областями, надеясь отвоевать те, что покрупнее.



Годы спустя, работая над этой книгой, я освоил важную стратегию, незамысловатую, но позволяющую обыгрывать 99 % новичков: двойной крест. Идея в том, что вы ломаете противнику весь кайф, когда он уже нацелился сделать триумфальный ход. Просто сократите свой ход, не начертив предпоследнюю линию. Таким образом, рисуя одну линию, вы жертвуете двумя квадратами, которые получит ваш противник (поэтому крест двойной). В обмен вы завладеете всей областью, на которую положил глаз ваш оппонент.



За пределами этой стратегии всё становится сложным и неясным. Детали вы можете почерпнуть из трудов великого Элвина Берлекампа. Он скончался, когда я работал над этой книгой, и навсегда останется в нашей памяти как ненасытное дитя математической сложности.

ГЕНЕАЛОГИЯ ИГРЫ

Сегодня в «Точки-клеточки» играют практически везде: на черных, белых и зеленых школьных досках, в желтых блокнотах юристов, на ресторанных салфетках или за неимением лучшего на собственных ладонях[8]. Впервые правила игры опубликовал математик Эдуард Люка в 1889 году. Он называл ее Pipopipette. По словам Эдуарда, игру придумали его бывшие студенты из престижной парижской Политехнической школы.

Странно, не правда ли? Зачем серьезным студентам тратить время на придумывание детской игры? И почему такой уважаемый ученый решил опубликовать статью о ней?



Ответ прост: потому что серьезная математика часто рождается именно из детских игр.

Мы видим эту закономерность даже в карьере Эдуарда. Пожалуй, он наиболее известен своим исследованием последовательностей наподобие чисел Фибоначчи, где каждое следующее число – сумма двух предыдущих. (Классическая последовательность: 1, 1, 2, 3, 5, 8 и так далее.) Числа Фибоначчи кажутся глупой забавой до тех пор, пока вы не начнете подсчитывать лепестки маргаритки, семена подсолнуха или ананаса. Тогда вы убедитесь, что в эту глупую игру играют не только дети (и неповзрослевшие взрослые), но и сама природа.

Страница 7