Размер шрифта
-
+

Логика для всех. От пиратов до мудрецов - стр. 18


Ехал как-то рыцарь по своим рыцарским делам. И встретил двух мальчиков.

– Дяденька, покатай на лошадке! – попросили дети.

– Ну что ж, – усмехнулся рыцарь, – если кто-то из вас сможет удержать в руках мой меч, то я его покатаю.

Старший, Том, удержал меч, а его младший брат Тим даже приподнять его не смог. Но добрый рыцарь все же покатал обоих.

– Надо было только меня покатать! – возмутился Том. – Ты же рыцарь и не можешь лгать.

– А я сказал чистую правду, – объяснил рыцарь. – Ты удержал меч, я обещал за это покатать на коне и сдержал слово. Но я вовсе не обещал не катать того, кто меч не удержит!

Объяснение рыцаря соответствует законам формальной логики. Высказывания типа «Если А, то Б» можно обозначать «А ⇒ Б» (читается «из А следует Б»). Здесь А – причина, а Б – следствие. Такое высказывание считается ложным лишь в одном случае: А истинно, а Б ложно (мальчик удержал меч, но рыцарь его НЕ покатал). В остальных трех случаях оно истинно:

1) А и Б оба истинны (мальчик удержал меч, рыцарь его покатал);

2) А и Б оба ложны (мальчик НЕ удержал меч, рыцарь его НЕ покатал);

3) А ложно, а Б истинно (мальчик НЕ удержал меч, но рыцарь его покатал).

В нашей истории для Тима имел место последний случай, так что рыцарь сказал правду.

Запишем в общем виде таблицу истинности высказывания «А ⇒ Б», обозначая истинное высказывание буквой И, а ложное – буквой Л.



Проиллюстрируем таблицу с помощью кругов Эйлера (рис. 7). В первый круг (А) позовем всех мальчиков, которые удержали меч. Во второй (Б) – тех, кого рыцарь покатал на лошадке. Область истинности высказывания «А ⇒ Б» (т. е. место для мальчиков, для которых высказывание рыцаря истинно) выделена серым. В ней находятся высказывания и про Тома, и про Тима.


Рис. 7


Про мальчика, не удержавшего меч, рыцарь НИЧЕГО НЕ ОБЕЩАЛ. Другими словами, если А ложно (то есть мальчик не удержал меч), то высказывание А ⇒ Б истинно независимо от истинности Б (то есть от катания на лошадке).

Задача 5.1. Перед перекрестком папа остановил машину. «У нас мотор сломался!» – испуганно закричал Ваня. «С чего ты взял?» – удивился папа. «Но ты же сам говорил, что если мотор сломался, то машина не едет», – объяснил Ваня. Правильно ли он рассуждал?

Решение. Папа ничего не говорил о поведении машины с исправным мотором. Она может как ехать, так и стоять (например, на красный свет или просто в гараже). В обоих случаях:

• мотор исправен и машина едет;

• мотор исправен, машина не едет

утверждение «если мотор сломался, то машина не едет» является истинным.

Ванина ошибка в том, что он поменял местами причину и следствие. При этом вместо верного утверждения «Если мотор сломался, то машина не едет» получилось неверное «Если машина не едет, то мотор сломался».

Высказывания «А ⇒ Б» и «Б ⇒ А» означают не одно и то же (см. рис. 8). Высказывания, в которых причина и следствие поменялись местами, называются обратными друг другу. Высказывание, обратное к истинному, может оказаться как истинным, так и ложным.


Рис. 8


Задача 5.2. Постройте высказывание, обратное данному. Истинно ли данное высказывание? А обратное ему?

1) Если последняя цифра натурального числа – 0, 2, 4, 6 или 8, то оно четное.

2) Если натуральное число делится на 6, то оно четное.

3) Если натуральное число делится на 3, то оно делится и на 5.

Страница 18