Размер шрифта
-
+

Искусственный интеллект. Машинное обучение - стр. 18

Примеры задач обучения с подкреплением включают обучение агентов в компьютерных играх, где агенту нужно изучить стратегии для достижения победы или достижения определенных целей, а также управление роботами в реальном мире, где агенту нужно принимать решения на основе восприятия окружающей среды и выполнения задач, например, перемещение в пространстве или выполнение определенных действий.


Пример 1

Давайте рассмотрим пример задачи обучения с подкреплением на простом примере – агент играет в игру "Сетка мира" (Gridworld). В этой игре агент находится на игровом поле, представленном в виде сетки, и его целью является достижение целевой ячейки, избегая при этом препятствий.

Для начала определим игровое поле. Давайте создадим сетку размером 4x4, где каждая ячейка может быть либо пустой, либо содержать препятствие или целевую ячейку.

```python

import numpy as np

# Создание игрового поля

grid_world = np.array([

[0, 0, 0, 0], # Пустая ячейка

[0, -1, 0, -1], # Препятствие (-1)

[0, 0, 0, -1], # Препятствие (-1)

[0, -1, 0, 1] # Целевая ячейка (1)

])

```

Теперь создадим простое правило для агента: если агент находится в ячейке, он может выбирать случайное действие: двигаться вверх, вниз, влево или вправо. Если агент попадает в препятствие, он не двигается и остается на месте. Если агент достигает целевой ячейки, он получает награду +10 и игра завершается.

```python

import random

# Функция для выполнения действия в игре

def take_action(state):

row, col = state

if grid_world[row, col] == -1: # Если попали в препятствие, остаемся на месте

return state

action = random.choice(['up', 'down', 'left', 'right']) # Случайное действие

if action == 'up':

row = max(0, row – 1)

elif action == 'down':

row = min(grid_world.shape[0] – 1, row + 1)

elif action == 'left':

col = max(0, col – 1)

elif action == 'right':

col = min(grid_world.shape[1] – 1, col + 1)

return (row, col)

# Функция для проверки завершения игры и получения награды

def get_reward(state):

row, col = state

if grid_world[row, col] == 1: # Если достигли целевой ячейки

return 10, True

return 0, False # Игра продолжается

# Функция для запуска игры

def play_game():

state = (0, 0) # Начальное состояние агента

total_reward = 0

done = False

while not done:

state = take_action(state)

reward, done = get_reward(state)

total_reward += reward

return total_reward

# Запуск игры

total_reward = play_game()

print("Total reward:", total_reward)

```

Это простой пример задачи обучения с подкреплением, где агент играет в игру "Сетка мира", перемещаясь по полю и получая награду за достижение целевой ячейки.

Пример 2

Рассмотрим пример задачи с использованием обучения с подкреплением. Давайте представим симуляцию игры в кости, где агент должен научиться выбирать наилучшие действия (выбор числа от 1 до 6) для максимизации своего выигрыша.

```python

import numpy as np

class DiceGame:

def __init__(self):

self.state = 0 # текущее состояние – результат броска кости

self.done = False # флаг окончания игры

self.reward = 0 # награда за текущий шаг

def step(self, action):

# Выполняем действие – бросаем кость

self.state = np.random.randint(1, 7)

# Вычисляем награду

if action == self.state:

self.reward = 10 # выигрыш, если действие совпало с результатом броска

else:

self.reward = 0 # нет выигрыша

# Устанавливаем флаг окончания игры (игра заканчивается после одного хода)

Страница 18