Искусственный интеллект. Машинное обучение - стр. 20
Логистическая регрессия имеет несколько значительных преимуществ. Во-первых, она проста в интерпретации, что позволяет анализировать вклад каждого признака в принятие решения моделью. Кроме того, она эффективна в вычислении и хорошо масштабируется на большие наборы данных. Также важно отметить, что у логистической регрессии небольшое количество гиперпараметров, что упрощает процесс настройки модели.
Однако у логистической регрессии также есть свои ограничения. Во-первых, она предполагает линейную разделимость классов, что ограничивает ее способность моделировать сложные нелинейные зависимости между признаками. Кроме того, она чувствительна к выбросам и может давать непредсказуемые результаты в случае наличия значительного количества выбросов в данных. Тем не менее, при правильном использовании и учете этих ограничений, логистическая регрессия остается мощным инструментом для решения широкого спектра задач классификации.
Пример 1
Давайте представим, что у нас есть набор данных о покупках клиентов в интернет-магазине, и мы хотим предсказать, совершит ли клиент покупку на основе его предыдущих действий. Это может быть задача бинарной классификации, которую мы можем решить с помощью логистической регрессии.
Задача:
Наша задача – на основе информации о клиентах и их действиях на сайте (например, время проведенное на сайте, количество просмотренных страниц, наличие добавленных товаров в корзину и т. д.), предсказать, совершит ли клиент покупку или нет.
Решение:
Для решения задачи предсказания покупок клиентов в интернет-магазине мы использовали модель логистической регрессии. Это классический метод бинарной классификации, который подходит для таких задач, где требуется определить вероятность принадлежности объекта к одному из двух классов.
Сначала мы загрузили данные о клиентах из файла "customer_data.csv" с помощью библиотеки pandas. Этот набор данных содержал информацию о различных признаках клиентов, таких как время проведенное на сайте, количество просмотренных страниц, наличие добавленных товаров в корзину и другие. Кроме того, для каждого клиента было указано, совершил ли он покупку (целевая переменная).
Далее мы предварительно обработали данные, если это было необходимо, например, заполнили пропущенные значения или закодировали категориальные признаки. Затем мы разделили данные на обучающий и тестовый наборы с использованием функции `train_test_split` из библиотеки scikit-learn.
После этого мы создали и обучили модель логистической регрессии с помощью класса `LogisticRegression` из scikit-learn на обучающем наборе данных. Затем мы использовали обученную модель, чтобы сделать предсказания на тестовом наборе данных.
Наконец, мы оценили качество модели, вычислив метрики, такие как точность (`accuracy`), матрица ошибок (`confusion_matrix`) и отчет о классификации (`classification_report`). Эти метрики помогают нам понять, насколько хорошо модель справляется с поставленной задачей классификации и какие ошибки она допускает.
Таким образом, с помощью модели логистической регрессии мы можем предсказывать вероятность совершения покупки клиентом на основе его поведения на сайте, что может быть полезно для принятия решений о маркетинговых стратегиях, персонализации предложений и улучшении пользовательского опыта.