Энциклопедия финансового риск-менеджмента - стр. 27
Однако если между данным моментом времени и первым процентным платежом рыночные доходности изменяются на одну и ту же величину Δr, а в дальнейшем уже меняться не будут, то будущая стоимость инвестиции П>ф(Т) через Т лет удовлетворяет равенству
Будущую стоимость П>ф(Т) будем называть фактической накопленной стоимостью портфеля облигаций.
Фактическая накопленная стоимость портфеля облигаций может оказаться выше или ниже целевой накопленной стоимости этого портфеля. Однако если временной горизонт инвестора Т совпадает с дюрацией Маколея портфеля облигаций, то фактическая накопленная стоимость портфеля никогда не будет меньше его целевой накопленной стоимости.
Пример 1.40. Рассмотрим портфель из двух облигаций с полугодовыми купонами, когда все рыночные доходности равны 6 %. Основные данные об облигациях портфеля приведены ниже в таблице:
Дюрация Маколея данного портфеля облигаций находится следующим образом:
Целевая накопленная стоимость портфеля через 4,053 года будет равна:
В таблице указаны фактические накопленные стоимости через 4,053 года при различных изменениях рыночных доходностей:
Стратегия иммунизации портфеля облигаций рассчитана на защиту портфеля облигаций от процентного риска. Эта стратегия предполагает следующие действия. В начальный момент времени формируется портфель облигаций так, чтобы дюрация Маколея этого портфеля совпадала с временным горизонтом инвестора. С годами портфель периодически пересматривается так, чтобы каждый раз дюрация Маколея совпадала с временным горизонтом инвестора.
1.16. Выпуклость финансовых инструментов
Рассмотрим финансовый инструмент со следующим потоком платежей:
Если требуемая доходность при начислении процентов дважды в год равна r, то выпуклостью (convexity) данного финансового инструмента называют число
Имеет место следующее равенство:
т. е. производная второго порядка цены финансового инструмента по требуемой доходности равна произведению выпуклости этого финансового инструмента на его цену.
При малых изменениях требуемой доходности имеет место следующее приближенное равенство:
Равенство (1.45) можно переписать в следующем виде:
Геометрический смысл этого равенства проиллюстрирован рис. 1.12.
Пример 1.41. Финансовый инструмент характеризуется следующим потоком платежей:
Расчет выпуклости данного финансового инструмента при требуемой доходности 10 % приведен в таблице:
Модифицированная дюрация финансового инструмента
Если требуемая доходность в начальный момент времени увеличится на 50 базисных пунктов, то цена финансового инструмента упадет приблизительно на 1,0188 %, так как
Заметим, что относительное изменение цены финансового инструмента, найденное приближенно, без учета выпуклости, равно -0,01026, а точное значение этого изменения равно -0,010189.
Если же требуемая доходность в начальный момент времени упадет на 200 базисных пунктов, то цена финансового инструмента вырастет приблизительно на 4,219 %, так как
в то время как относительное изменение цены инструмента, найденное приближенно, без учета выпуклости, равно 0,04104, а точное значение этого изменения равно 0,04222.