Размер шрифта
-
+

120 практических задач - стр. 13

4. Построение дискриминатора:

– Дискриминатор оценивает, являются ли изображения реальными или сгенерированными. Он состоит из свёрточных слоев, слоев LeakyReLU и dropout для классификации изображений.

5. Построение GAN:

– Генератор и дискриминатор объединяются в модель GAN. Определяются функции потерь и оптимизаторы для обеих моделей.

6. Обучение GAN:

– GAN обучается в течение заданного числа эпох. На каждом шаге обучения генератор пытается создать реалистичные изображения, а дискриминатор учится отличать реальные изображения от сгенерированных.

7. Генерация изображений:

– После обучения GAN, создаются и сохраняются изображения, сгенерированные генератором.

Этот пример демонстрирует, как создать простую GAN для генерации рукописных цифр из набора данных MNIST. Модель может быть улучшена за счет добавления дополнительных слоев, настройки гиперпараметров и использования более сложных архитектур.

8. Построение сложной GAN для генерации реалистичных изображений

– Задача: Генерация изображений лиц.

Для создания сложной генеративно-состязательной сети (GAN) для генерации реалистичных изображений лиц можно использовать библиотеку TensorFlow и Keras. Мы будем использовать улучшенную архитектуру GAN, известную как DCGAN (Deep Convolutional GAN), которая доказала свою эффективность в создании реалистичных изображений. Набор данных CelebA, содержащий фотографии лиц знаменитостей, является хорошим выбором для этой задачи.

Шаги:

1. Импорт библиотек и модулей.

2. Подготовка данных.

3. Построение генератора.

4. Построение дискриминатора.

5. Построение и компиляция GAN.

6. Обучение GAN.

7. Генерация изображений.

Пример кода:

```python

import tensorflow as tf

from tensorflow.keras import layers, models

import numpy as np

import os

import matplotlib.pyplot as plt

from tensorflow.keras.preprocessing.image import ImageDataGenerator

# Шаг 1: Импорт библиотек

import tensorflow as tf

from tensorflow.keras import layers, models

import numpy as np

import matplotlib.pyplot as plt

import os

# Шаг 2: Подготовка данных

# Загрузка набора данных CelebA

# Этот пример предполагает, что данные находятся в папке 'img_align_celeba/img_align_celeba'

# Скачивание и подготовка данных не входит в код

DATA_DIR = 'img_align_celeba/img_align_celeba'

IMG_HEIGHT = 64

IMG_WIDTH = 64

BATCH_SIZE = 128

BUFFER_SIZE = 60000

def load_image(image_path):

image = tf.io.read_file(image_path)

image = tf.image.decode_jpeg(image, channels=3)

image = tf.image.resize(image, [IMG_HEIGHT, IMG_WIDTH])

image = (image – 127.5) / 127.5 # Нормализация изображений в диапазоне [-1, 1]

return image

def load_dataset(data_dir):

image_paths = [os.path.join(data_dir, img) for img in os.listdir(data_dir)]

image_dataset = tf.data.Dataset.from_tensor_slices(image_paths)

image_dataset = image_dataset.map(load_image, num_parallel_calls=tf.data.experimental.AUTOTUNE)

image_dataset = image_dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE).prefetch(tf.data.experimental.AUTOTUNE)

return image_dataset

train_dataset = load_dataset(DATA_DIR)

# Шаг 3: Построение генератора

def build_generator():

model = models.Sequential()

model.add(layers.Dense(8 * 8 * 256, use_bias=False, input_shape=(100,)))

model.add(layers.BatchNormalization())

model.add(layers.LeakyReLU())

model.add(layers.Reshape((8, 8, 256)))

Страница 13