Размер шрифта
-
+

120 практических задач - стр. 12

model.add(layers.LeakyReLU())

model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))

assert model.output_shape == (None, 28, 28, 1)

return model

# Шаг 4: Построение дискриминатора

def build_discriminator():

model = models.Sequential()

model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=[28, 28, 1]))

model.add(layers.LeakyReLU())

model.add(layers.Dropout(0.3))

model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))

model.add(layers.LeakyReLU())

model.add(layers.Dropout(0.3))

model.add(layers.Flatten())

model.add(layers.Dense(1, activation='sigmoid'))

return model

# Построение генератора и дискриминатора

generator = build_generator()

discriminator = build_discriminator()

# Определение функции потерь и оптимизаторов

cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)

def discriminator_loss(real_output, fake_output):

real_loss = cross_entropy(tf.ones_like(real_output), real_output)

fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)

total_loss = real_loss + fake_loss

return total_loss

def generator_loss(fake_output):

return cross_entropy(tf.ones_like(fake_output), fake_output)

generator_optimizer = tf.keras.optimizers.Adam(1e-4)

discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)

# Шаг 5: Построение GAN

@tf.function

def train_step(images):

noise = tf.random.normal([BATCH_SIZE, 100])

with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:

generated_images = generator(noise, training=True)

real_output = discriminator(images, training=True)

fake_output = discriminator(generated_images, training=True)

gen_loss = generator_loss(fake_output)

disc_loss = discriminator_loss(real_output, fake_output)

gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)

gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)

generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))

discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))

def train(dataset, epochs):

for epoch in range(epochs):

for image_batch in dataset:

train_step(image_batch)

print(f'Эпоха {epoch + 1} завершена')

# Шаг 6: Обучение GAN

EPOCHS = 50

train(train_dataset, EPOCHS)

# Шаг 7: Генерация изображений

def generate_and_save_images(model, epoch, test_input):

predictions = model(test_input, training=False)

fig = plt.figure(figsize=(4, 4))

for i in range(predictions.shape[0]):

plt.subplot(4, 4, i+1)

plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray')

plt.axis('off')

plt.savefig(f'image_at_epoch_{epoch:04d}.png')

plt.show()

# Генерация изображений после обучения

noise = tf.random.normal([16, 100])

generate_and_save_images(generator, EPOCHS, noise)

```

Пояснение:

1. Импорт библиотек: Импортируются необходимые библиотеки TensorFlow, Keras, numpy и matplotlib.

2. Подготовка данных: Загружаются данные MNIST и нормализуются в диапазоне [-1, 1]. Данные затем разделяются на батчи для обучения.

3. Построение генератора:

– Генератор создает изображения из случайного шума. Он включает плотные слои, batch normalization и Conv2DTranspose слои для генерации изображений размером 28x28 пикселей.

Страница 12