Размер шрифта
-
+

Занимательная радиация. Всё, о чём вы хотели спросить: чем нас пугают, чего мы боимся, чего следует опасаться на самом деле, как снизить риски - стр. 18

. Как же оценить и сравнить между собой возможный риск онкологических заболеваний при облучении разных органов и тканей?

Для этой цели используют понятие: эффективная эквивалентная доза, или просто – эффективная доза (измеряют её по-прежнему в зивертах). Такая доза учитывает радиочувствительность разных органов и тканей, а также – всего тела человека.

Радиочувствительность выражается взвешивающим коэффициентом для данного органа или ткани (таблица 6.1).


Таблица 6.1 Взвешивающие коэффициенты для тканей и органов при расчете эффективной дозы [2]


Эффективная доза представляет собой произведение эквивалентной дозы в органе или ткани на соответствующий взвешивающий коэффициент для данного органа или ткани:


Эквивалентная доза × коэффициент = эффективная доза


Например, в случае эквивалентной дозы на лёгкие (скажем, за счёт вдыхания радиоактивного радона), равной 100 мЗв, эффективная доза будет равна:

100 × 0,12 = 12 мЗв.

Это означает, что риск смерти от радиационного рака при облучении лёгких примерно в восемь раз меньше, чем при облучении той же дозой всего тела.

Если же облучению подвергается весь организм, а не отдельный орган (или несколько органов), значение эффективной дозы совпадёт со значением эквивалентной дозы: ведь сумма всех приведенных в таблице 6.1 взвешивающих коэффициентов равна единице.

В-третьих, важно оценить последствия облучения не только для конкретного человека. Одно дело, когда облучаются десять человек, и совсем другое, – десятки тысяч (Хиросима, Нагасаки) или миллионы (Чернобыль). Масштабы облучения учитывает так называемая коллективная доза. Она представляет собой сумму индивидуальных доз в группе облучённых людей и выражается в человеко-зивертах (чел. – Зв).

Чтобы не запутаться в разных видах доз, взгляните на рис. 6.2 [3].


Рис. 6.2 Дозовые величины, используемые в радиационной гигиене [3]


Сравним два разных случая облучения:

– 10 тысяч человек облучаются дозой 1 Зв каждый;

– 20 тысяч человек облучаются дозой 0,5 Зв каждый.

Для конкретного облученного вероятность смерти от рака тем выше, чем больше полученная им индивидуальная доза. Ясно, что в первой группе находиться опаснее.

А теперь рассчитаем коллективную дозу для каждой из этих групп. Поскольку внутри каждой группы индивидуальные дозы одинаковы, коллективная доза будет представлять произведение индивидуальной дозы на количество облученных. В наших группах коллективные дозы оказались одинаковы и равны

10 000 чел. – Зв:

10 000 чел. × 1 Зв = 10000 чел. – Зв;

20 000 чел. × 0,5 Зв = 10000 чел. – Зв.

Это означает, что число дополнительных смертей от рака на протяжении всей жизни в обеих группах будет одинаково (около тысячи). Но такие серьёзные дозы даже у хибакуси встречались нечасто, средняя доза была 200 мЗв.

На самом деле подобные расчёты куда сложнее. Их результаты зависят ещё и от возраста облучённых (особый разговор – о детях), и от формы онкологических заболеваний (лейкозы отличны от других раков) и т. п. Желающие разобраться детальнее могут обратиться к учебнику по радиационной гигиене [4].

В-четвёртых, в отличие от лучевой болезни, для случаев радиационной онкологии нельзя предсказать, кто именно из облучённых пострадает от рака.

Да, именно так. Это для ОЛБ всё просто: при дозе больше 1 Зв человек неизбежно заболеет, и чем больше доза, тем болезнь тяжелее. А для раковых заболеваний с ростом дозы увеличивается не тяжесть, а

Страница 18