Загадки и диковинки в мире чисел - стр. 13
– К чему вам дорогие счетные машины, если вы так искусно считаете при помощи ваших дешевых счетов! – говорили нередко представители иностранных фирм.
А ведь заграничные машины в сотни раз дороже наших конторских счетов!
Правда, на русских счетах нельзя производить всех тех действий, которые выполняются машинами. Но во многом, например, в сложении и вычитании, счеты смело могут соперничать со сложными механизмами. Впрочем, умножение и деление в искусных руках также значительно ускоряются на счетах, – если знать специальные приемы выполнения этих действий.
Познакомимся же с некоторыми из этих приемов.
Умножение на счетах
Вот несколько приемов, пользуясь которыми, всякий, умеющий быстро складывать на счетах, сможет проворно выполнять встречающиеся на практике примеры умножения.
Умножение на 2 и на 3 заменяется простым сложением.
При умножении на 4 умножают сначала на 2 и складывают этот результат с самим собою.
Умножение числа на 5 выполняется на счетах так: переносят все число одной проволокой выше, – т. е. умножают его на 10, а затем делят это 10-кратное число пополам (как делить на 2 с помощью счетов – мы уже объяснили выше, на стр. 37).
Вместо умножения на 6 умножают на 5 и прибавляют умножаемое.
Вместо умножения на 7 множат на 10 и отнимают умножаемое три раза.
Умножение на 8 заменяют умножением на 10 без двух.
Точно так же множат на 9: заменяют умножением на 10 без 1.
При умножении на 10 – переносят, как мы уже сказали, все число одной проволокой выше.
Читатель теперь, вероятно, уже и сам сообразит, как надо поступать при умножении на числа больше 10 и какого рода замены тут окажутся наиболее удобными. Множитель 11 надо, конечно, заменить 10+1; множитель 12 заменяют 10 + 2, или практически 2 + 10, т. е. сначала откладывают удвоенное число, а затем прибавляют удесятеренное. Множитель 13 заменяется 10 + 3 и т. д.
Вот несколько особых случаев для множителей первой сотни:
20 = 10 × 2
22 = 11 × 2
25 = (100: 2): 2
26 = 25 + 1
27 = 30 – 3
32 = 22 + 10
42 = 22 + 20
43 = 33 + 10
45 = 50 – 5
63 = 33 + 30 и т. д.
Легко видеть, между прочим, что с помощью счетов очень удобно умножать на такие числа, как на 22, 33, 44, 55 и т. п., а потому следует стремиться при разбивке множителей пользоваться подобными числами с одинаковыми цифрами.
К сходным приемам прибегают и при умножении на числа, большие 100. Если искусственные приемы утомительны, мы всегда можем умножить с помощью счетов по общему правилу, умножая каждую цифру множителя и записывая частные произведения – это все же дает некоторое сокращение времени.
Деление на счетах
Выполнять деление с помощью конторских счетов гораздо труднее, чем умножать; для этого нужно запомнить целый ряд особых приемов, подчас довольно сложных. Интересующимся ими придется обратиться к специальным руководствам. Здесь же укажу лишь, для примера, удобные приемы деления с помощью счетов на числа первого десятка (кроме числа 7, способ деления на которое чересчур сложен).
Как делить на 2, мы уже знаем – способ этот очень прост.
Гораздо сложнее прием деления на 3: он состоит в замене деления умножением на бесконечную периодическую дробь 3,3333… (известно, что 0,333… = 1/3). Умножать с помощью счетов на 3 мы умеем; уменьшать в 10 раз – тоже несложно: надо лишь переносить делимое одной проволокой ниже. После не долгого упражнения этот прием деления на 3, на первый взгляд такой сложный, оказывается на практике довольно удобным.