Размер шрифта
-
+

Загадки и диковинки в мире чисел - стр. 10


(5 + а) (5 + b).


А что мы делаем, когда умножаем с помощью пальцев? Загибаем на одной руке а пальцев, на другой – Ь, оставляя незагнутыми остальные пальцы, т. е. на одной руке (5 – а), на другой (5 – Ь) пальцев. Затем складываем а + b и получаем цифру десятков, т. е. число


10 + Ь).


К нему прибавляем произведение чисел на загнутых пальцах, т. е.


(5 – а) (5-Ь).


И следовательно, в результате получаем:


10 (а + b) + (5 – а) (5-Ь).


Если выполним умножения, обозначенные скобками, мы будем иметь:


10а + 10b + 25 – 5а – 5b + ab.


Но так как 10а – 5а = 5а, а 10b – 5b = 5b, то строка упрощается и получает вид:


25 + 5а + 5b + ab,


т. е. то же самое, что получилось бы от непосредственного умножения данных нам множителей (5 + а) и (5 + Ь):


(5 + а)(5 + Ь) = 25 + 5а + 5b + ab.


Короче, все действия на пальцах можно представить в общем виде так:


А это выражение, мы уже знаем, равно (5 + а) (5 + Ь).


Мы сказали в самом начале статьи, что умножение на пальцах можно выполнять до 15 × 15. Как же

это делается? Несколько иначе, чем умножение до 10 × 10. Пусть требуется умножить 12 × 14. Загибаем на руках избыток множителей над 10 (а не над 5, как раньше), т. е. на одной руке 2 пальца, на другой – 4. Складываем 2 + 4, приписываем нуль, прибавляем произведение тех же чисел 2 и 4 (а не чисел незагнутых пальцев) и, кроме того, во всех случаях прибавляем 100. Имеем:


12 × 14 = 100 + (2 + 4) 10 + 2 × 4 = 168.


Еще пример —11 × 13:



На чем основан этот прием? Обратимся снова к алгебре. Все случаи подобного умножения можно в общем виде изобразить так:


(10 + а) × (10 + Ь),


где а и b – числа, меньшие 5, – означают, сколько загнуто пальцев. Выполнив умножение по общим правилам, получим:


(10 + а) (10 + Ь) = 100 + 10 + b) + ab.


Из этой строки ясна правильность способа: сто + + сумма загнутых пальцев с приписанным нулем + произведение загнутых пальцев.

Любопытно, что произведение 10 × 10 можно получить на пальцах по обоим способам. Действительно, по первому имеем:


По второму способу:


Существует также прием умножения на пальцах чисел от 15 × 15 до 20 × 20, – но способ этот слишком уж сложен. Всякая счетная машина хороша, когда обращение с нею просто; наша природная десятипальцевая машина не составляет исключения из этого правила.

Механическое умножение на 9

Опишем еще – как интересный курьез – простой прием умножения однозначных чисел на 9. Пусть нужно умножить 7 × 9. Положите перед собою на стол рядом обе руки и загните 7-й палец, считая слева. Тогда перед вами налево 6 пальцев, направо – 3: искомое произведение 63.

При умножении 5 × 9 загибаем 5-й палец: имеем налево 4, направо – 5 пальцев; произведение 45.

Предоставляем читателю самому сообразить, на чем этот способ основан.

Глава III Потомок древнего абака

Чеховская задача

Всем, вероятно, памятна в своем роде знаменитая арифметическая задача, которая так смутила семиклассника Зиберова из чеховского рассказа «Репетитор».


Купец купил 138 аршин черного и синего сукна за 540 руб. Спрашивается, сколько аршин купил он того и другого, если синее стоило 5 руб. за аршин, а черное 3 руб.?


С тонким юмором описывает Чехов, как беспомощно трудились над этой задачей и семиклассник-репетитор, и его ученик, двенадцатилетний Петя, пока не выручил их Петин отец, Удодов:


Петя повторяет задачу и тотчас же, ни слова не говоря, начинает делить 540 на 138.

Страница 10