Размер шрифта
-
+

Удивительная физика - стр. 39

Так и в случае вращательного движения: если момент инерции непостоянен, приходится принимать постоянной не угловую скорость, а произведение угловой скорости на момент инерции – так называемый кинетический момент. В этом случае закон инерции примет такую форму: «Изолированное от внешних моментов относительно оси вращения тело будет сохранять кинетический момент относительно этой оси постоянным». Этот закон (в несколько иной формулировке) носит название закона сохранения кинетического момента.

Для демонстрации этого закона удобно воспользоваться простым прибором, называемым платформой (скамьей) Жуковского. Это круглая горизонтальная платформа на подшипниках, которая с малым трением может вращаться вокруг вертикальной оси (рис. 53). Если человек, стоя на этой платформе и вращаясь с некоторой угловой скоростью, разведет в сторону руки (еще лучше с грузами в них, например, гантелями), то его момент инерции относительно вертикальной оси повысится, а угловая скорость сильно упадет. Опуская руки, человек внутренним усилием сообщает себе первоначальную угловую скорость. Даже стоя на платформе неподвижно, можно повернуть корпус в любую сторону, вращая вытянутую вверх руку в противоположном направлении. Таким способом изменения угловой скорости широко пользуются в балете, акробатике и т. п., даже кошки успешно приземляются на лапы благодаря вращению хвоста в соответствующем направлении.


Рис. 53. Платформа Жуковского и человек

На явлении инерции вращательного движения основаны многочисленные приборы и машины, в частности, инерционные двигатели – аккумуляторы, сохраняющие кинетическую энергию при инерционном вращении маховика, и гироскопические приборы, сохраняющие, образно говоря, его кинетический момент. Существуют также и маховики переменного момента инерции, напоминающие по принципу действия человека на платформе Жуковского.

Реальны ли центробежные силы?

Мы уже знаем, что так называемые силы инерции, которые мы добавляем к реально действующим силам якобы для облегчения решения задач, на самом деле не существуют. Слово «якобы» автор употребил потому, что иногда это «облегчение» оборачивается такой ошибкой, что лучше бы и не использовать этих сил инерции вообще. Тем более сейчас, когда всю счетную работу выполняют компьютеры, а им почти все равно, облегчили мы расчеты или нет.

Так вот для вращательного движения вопрос с силами инерции обстоит гораздо запутаннее, чем для прямолинейного. И последствия ошибок могут быть хуже. Чего стоят хотя бы пресловутые центробежные силы? Почти каждый из нас, включая даже научных работников, думает, что такие силы есть и действуют они на вращающуюся точку или тело. И бывают очень обескуражены, когда узнают, что их нет и быть не может.

Приведем простейший, но тем не менее убийственный для этих сил пример. Известно, что Луна вращается вокруг Земли. Спрашивается, действуют ли на нее центробежные силы? Спросите, пожалуйста, об этом своих товарищей, родителей, знакомых. Большинство ответит: «Действуют!» Тогда вы поспорьте с ними на что хотите и начинайте доказывать, что этого не может быть.

Основных довода – два. Первый: если бы на Луну действовала центробежная сила (то есть сила, направленная от центра вращения наружу), то она могла бы действовать только со стороны Земли, так как других тел поблизости нет. Думаю, что напоминать о том, что силы действуют на тела только со стороны других тел, а не «просто так», уже не надо. А если все так, то, значит, Земля не притягивает, а отталкивает Луну – от себя наружу. Между тем, как мы знаем, существует закон всемирного тяготения, а не отталкивания. Поэтому на Луну может действовать со стороны Земли только одна-единствен-ная сила – притяжения P, направленная точно наоборот – от Луны к Земле. Такая сила называется центростремительной, и она реально есть, она-то и сворачивает Луну с прямолинейного инерционного пути и заставляет вращаться вокруг Земли. А центробежной силы, извините, нет (рис. 54).

Страница 39