Размер шрифта
-
+

Удивительная физика - стр. 16

Великие ошибки великого Галилея

Перенесемся из античных времен в доньютоновскую эпоху, где над механикой «властвовал» великий Галилей. Развитие динамики как науки связано с именем великого итальянского ученого эпохи Возрождения Галилео Галилея (1564—1642). Наибольшей заслугой Галилея как ученого-механика было то, что он первым заложил основы научной динамики, нанесшей сокрушительный удар по динамике Аристотеля. Галилей называл динамику «наукой о движении относительно места». Его сочинение «Беседы и математические доказательства, касающиеся двух новых наук» состоит из трех частей: первая часть посвящена равномерному движению, вторая – равномерно ускоренному, третья – принужденному движению брошенных тел.

В античной механике термина «скорость» не было. Рассматривались более или менее скорые движения, а также «равноскорые», но количественно характеристики этих движений в виде скорости не существовало. Галилей впервые подошел к разрешению вопроса о равномерном и ускоренном движении массивных тел и рассмотрел движение тел по инерции.

Галилею приписывают открытие закона инерции. Делают это даже в учебниках – школьных и не только. Закон этот Галилей выражал так: «Движение тела, на которое не действуют силы (конечно, внешние) либо равнодействующая их равна нулю, является равномерным движением по окружности». Так, по мнению Галилея, двигались небесные тела, «предоставленные самим себе». На самом же деле движение по инерции, как известно, может быть только равномерным и прямолинейным. Что же касается небесных тел, то их с этого движения «сбивает» внешняя сила – сила всемирного тяготения.

Рассматривая взгляд Галилея на инерцию, убеждаемся в его неправомерности: ошибка в рассуждениях возникла из-за того, что Галилей не знал о законе всемирного тяготения, открытого позже Ньютоном.

Доказывая принцип относительности, Галилей утверждал, что если корабль движется равномерно и без качки (рис. 23), то никаким механическим экспериментом нельзя обнаружить этого движения. Он предлагал мысленно разместить в трюме корабля сосуды с вытекающей из них водой, с плавающими в них рыбками, летающих мух и бабочек и утверждал, что стоит ли корабль или движется равномерно – их действия не изменяются. Не надо при этом забывать, что движение корабля не прямолинейное, а круговое (правда, по окружности большого радиуса, какой является то или иное сечение Земли).


Рис. 23. Корабль Галилея (видно, что он плывет по окружности)

Сейчас мы знаем, что в системе, движущейся по кривой, какой является и окружность, невозможно соблюдение закона инерции: эта система не является инерциальной. Действительно, в принципе Галилея величина скорости относительного движения не играет роли, как и скорость движения одной инерциальной системы относительно другой.

Но если кораблю придать первую космическую скорость (8 км/с), то все предметы в его трюме, как и сам корабль, сделаются невесомыми. Механический эксперимент, проведенный с достаточной точностью, покажет, что и для реальных скоростей движения перемещения тел в трюме движущегося корабля и корабля неподвижного будут различаться между собой. Более того, движение тел изменится, если корабль будет идти с одной и той же скоростью, но разными курсами – допустим, по меридиану и по экватору. Не только движущиеся в трюме тела будут сбиваться с предполагаемой траектории, но и сам корабль в Северном полушарии будет относить вправо по курсу, а в Южном – влево. Интересно, что эти отклонения, вызванные вращением Земли как неинерциальной системы, не зависят даже от направления движения.

Страница 16