Ты – Космос. Как открыть в себе вселенную и почему это важно - стр. 10
Оставим на потом специфику принципа неопределенности, формулы, управляющей отношениями волн и частиц. Сконцентрируемся на том, что очень скромные вещи «там» можно изменить, если просто на них смотреть (а это уже умственное действие). Обыденному сознанию трудно это принять, потому что мы привыкли считать, что смотреть – действие пассивное. Но вернемся к мыши в углу. Когда вы ее замечаете, она зачастую замирает и тут же быстро убегает в норку, как будто хочет пережить возможное нападение. Ваш взгляд вызвал такую реакцию просто потому, что мышь поняла, что вы на нее смотрите! Может ли фотон или электрон почувствовать взгляд ученого, наблюдающего за ним?
Сам такой вопрос может быть нелепым для ученых, которые в подавляющем большинстве считают, что разума в природе не было, по крайней мере до тех пор, пока не появилась и не развилась человеческая жизнь. Природа, согласно научной мысли многих столетий, вещь одновременно безумная и случайная. Но как тогда мог такой выдающийся современный физик, как Фримен Дайсон, сказать вот это:
«Атомы в лаборатории – вещь странная: они ведут себя не как инертные вещества, но как активные существа. Они делают непредсказуемый выбор из альтернативных возможностей согласно законам квантовой механики. Похоже, что разум, проявляющийся в способности делать выбор, в какой-то мере присущ каждому атому»?
Заявление Дайсона – дерзость вдвойне. Он утверждает: атомы делают выбор, что уже есть признак разума. Он говорит о том, что Вселенная сама по себе разумна! Это своего рода связь между поведением малых и больших вещей. Вместо того, что атомы тотально отличаются от деревьев, облаков, слонов и планет, утверждается, что они только кажутся разными. Если посмотреть на частички пыли в лучах света, их движение покажется совершенно беспорядочным; так их и опишет физика движения тела. Но понятнее все сделает другая визуализация.
Представьте, что вы сидите на смотровой площадке Эмпайр Стейт Билдинг, а с вами рядом – физик. Вы оба смотрите на улицу под вами. На каждом углу одни машины сворачивают направо, а другие – налево. Случайная модель? Да, ответит физик. Статистический массив можно отразить на карте, чтобы показать, что за некоторый период времени налево и направо будет поворачивать примерно одинаковое количество машин. При этом никто не сможет достоверно предсказать, направо или налево повернет следующая машина: вероятность – 50:50. Но вы знаете: внешнее здесь обманчиво. У каждого водителя в каждой машине есть свои причины свернуть направо или же налево, а следовательно, ни один из поворотов не случаен. Нужно просто знать разницу между вероятностью и выбором.
В науке значение вероятности столь абсолютизировано и привязано к выбору, что в применении к физическим объектам это оказывается абсурдом. Посмотрим на нашу планету. Все элементы на Земле, которые по тяжести равны железу или тяжелее него (в том числе многие тяжелые металлы и радиоактивные элементы, такие как уран и плутоний), возникли во время взрывов гигантских звезд, известных как сверхновые.
Без таких взрывов даже невероятного тепла внутри обычной звезды, вроде нашего Солнца, недостаточно, чтоб связать атомы в более тяжелые элементы. Когда сверхновая взрывается, эти элементы становятся межзвездной пылью. Пыль собирается в облака, и, в случае нашей Солнечной системы, эти облака в конечном счете становятся планетами. Расплавленное ядро Земли состоит из железа, но внутри него существуют токи, несущие часть железа вблизи поверхности планеты. Немного железа даже вымывается в океаны и верхние слои почвы. Оттуда нам достается то железо, которое делает кровь красной и позволяет дышать, получая кислород из воздуха.