Размер шрифта
-
+

Теорема века. Мир с точки зрения математики - стр. 19

Поверхности с постоянной кривизной бывают двух родов. Одни из них – поверхности с положительной кривизной; они могут быть деформированы так, что накладываются на сферу. Следовательно, геометрия этих поверхностей сводится к сферической геометрии, которая есть геометрия Римана. Другие – поверхности с отрицательной кривизной. Бельтрами показал, что геометрия этих поверхностей есть не что иное, как геометрия Лобачевского. Таким образом, геометрии двух измерений, как Римана, так и Лобачевского, оказываются связанными с евклидовой геометрией.

Истолкование неевклидовых геометрических систем. Таким образом, устраняется возражение, касающееся геометрических систем двух измерений.

Легко было бы распространить рассуждение Бельтрами на геометрии трех измерений. Умы, не отрицающие пространства четырех измерений, не увидят в этом никакой трудности, но таковых немного. Поэтому я предпочитаю поступить иначе.

Возьмем некоторую плоскость, которую я буду называть основной, и построим нечто вроде словаря, установив соответствие в двойном ряду членов, написанных в двух столбцах, таким же образом, как в обычных словарях соответствуют друг другу слова двух языков, имеющие одинаковое значение.



И т. д.

Возьмем затем теоремы Лобачевского и переведем их с помощью этого словаря, как мы переводим немецкий текст с помощью немецко-французского словаря. Мы получим таким образом теоремы обыкновенной геометрии.

Например, теорема Лобачевского: «сумма углов треугольника меньше двух прямых» переводится так: «если криволинейный треугольник имеет сторонами дуги кругов, которые при продолжении пересекают основную плоскость ортогонально, то сумма углов этого криволинейного треугольника будет меньше двух прямых». Таким образом, как бы далеко мы ни развивали следствия из допущений Лобачевского, мы никогда не натолкнемся на противоречие. В самом деле, если бы две теоремы Лобачевского находились в противоречии, то то же самое имело бы место и для переводов этих двух теорем, сделанных при помощи нашего словаря; но эти переводы суть теоремы обыкновенной геометрии, а никто не сомневается, что обыкновенная геометрия свободна от противоречий. Однако откуда происходит в нас эта уверенность и справедлива ли она? Это – вопрос, который я не буду разбирать здесь, так как он потребовал бы подробного развития. Во всяком случае, указанное выше возражение отпадает полностью.

Это еще не все. Геометрия Лобачевского, допускающая таким образом конкретное истолкование, перестает быть пустым логическим упражнением и может получить применение; я не имею времени говорить здесь ни об ее приложениях, ни о той пользе, которую Клейн и я извлекли из нее для интегрирования линейных уравнений.

Указанное истолкование, впрочем, не единственное. Можно было бы установить несколько словарей, аналогичных предыдущему, и все они позволяли бы простым «переводом» преобразовывать теоремы Лобачевского в теоремы обыкновенной геометрии.

Скрытые аксиомы. Являются ли аксиомы, явно формулируемые в руководствах, единственными основаниями геометрии? Мы можем убедиться в противном, замечая, что даже если одну за другой отвергнуть эти аксиомы, все-таки еще останутся нетронутыми некоторые предложения, общие теориям Евклида, Лобачевского и Римана. Эти предложения должны опираться на некоторые предпосылки, которые геометры допускают в скрытой форме. Интересно попытаться выделить их из классических доказательств.

Страница 19