Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей - стр. 26
Позже оказалось, что некоторые предполагаемые гены человека на самом деле не работают (являются псевдогенами), и сейчас считается, что у человека 20–25 тысяч функциональных генов>80. Довольно обидный факт для “венца творения”. Особенно если учесть, что полно организмов как с бóльшим по размеру геномом, так и с бóльшим числом генов. В первом случае примером послужит двоякодышащая рыба Protopterus aethiopicus, чей геном в 40 раз больше человеческого>81, а во втором – рис Oryza sativa, у которого более 30 тысяч генов>82. Возможно, венцом творения правильнее называть Trichomonas vaginalis — одноклеточного возбудителя трихомониаза, распространенного заболевания, передающегося половым путем. По современным оценкам, Trichomonas vaginalis имеет около 60 тысяч генов>83.
Некоторые биологи составили достаточно правильное и обоснованное представление о количестве генов у человека задолго до того, как был прочитан его геном. Еще в 1972 году эволюционный биолог Сусуму Оно писал в своей статье “Столько мусорной ДНК в нашем геноме”>84, что у нас должно быть около 30 тысяч генов. Эту феноменально близкую к правде цифру Оно получил сорок лет назад из соображений о том, как часто происходят вредные мутации – изменения ДНК, негативно сказывающиеся на потомстве у людей, мышей и других организмов. Если бы у нас было 3 миллиона важных генов, то многие из них неизбежно портились бы в каждом поколении. А вот 30 тысяч, согласно расчетам Оно, мы могли бы содержать в нашем геноме без серьезных рисков. Но из этого следовало, что большая часть генома человека не несет жизненно важных функций или попросту является “мусором”. Мутации в таких участках безвредны. В пользу принципиального существования мусора в ДНК можно добавить такой не совсем корректный, но интуитивно понятный аргумент: если бы каждый нуклеотид в любом геноме был функционален, то зачем луку геном в пять раз больший, чем наш с вами?
С появлением новых данных – полных геномов человека и других животных – ситуация прояснилась. Если взять геномы человека, шимпанзе, мыши, утконоса и так далее, окажется, что какие-то участки последовательностей нуклеотидов даже у сравнительно далеких видов очень похожи – например, гены, необходимые для синтеза белков, входящих в состав рибосом. Это понятно: рибосомы возникли очень давно, у них были миллиарды лет, чтобы в процессе эволюции достигнуть такого совершенства, что их практически невозможно улучшить или изменить, не испортив один из важнейших клеточных процессов – синтез белков, за который они отвечают.
Мутации происходят в любых участках генома, поэтому хорошим критерием функциональности участка ДНК является то, что возникающие в нем мутации не закрепляются: носители новых генетических вариантов вымирают, не оставляя потомства, устраняются естественным отбором. Другие участки геномов имеют значительные расхождения между видами и даже внутри видов. Значит, мутации в этих участках, скорее всего, безвредны, то есть их функциональная роль как минимум невелика или не зависит от конкретной последовательности нуклеотидов. Например, если последовательность нужна только для физического разделения в пространстве двух участков ДНК. Это знание используется в современной медицинской генетике, когда ученые пытаются понять, какие изменения в ДНК человека приводят к тому или иному наследственному заболеванию