Скорость, масса, энергия. Физические основы хоккея - стр. 9
Кстати, о балансе. Знаешь ли ты, что в физике есть такое понятие – коэффициент трения? Это безразмерная величина, характеризующая «цепкость» двух соприкасающихся поверхностей. Чем больше коэффициент, тем сильнее трение. Так вот, для пары «сталь-лед» коэффициент трения скольжения – около 0,005—0,02. Это очень мало! Для сравнения – у пары «резина-асфальт» (по которой ездят автомобили) коэффициент трения – около 0,7—0,8. Вот почему шайбе так легко скользить по льду, а вот внезапно затормозить – очень сложно.
Но не будем забывать, что хоккей – это не только скольжение, но и броски, удары, столкновения. А при каждом таком контакте возникает особый вид трения – трение качения. Это когда одно тело катится по поверхности другого (как, например, шайба по льду после броска). И вот тут коэффициент трения уже гораздо выше – около 0,1—0,3. Именно поэтому после броска шайба довольно быстро останавливается, если ее не подхватить клюшкой.
А теперь, когда мы разобрались с теорией, давай перейдем к практике. Вспомни легендарный гол Марио Лемье в матче против сборной СССР на Кубке Канады 1987 года. Помнишь, как он, обыграв всю советскую оборону, на немыслимой скорости влетел в ворота вместе с шайбой? Вот где трение сыграло ключевую роль! Лемье так разогнался, что даже не успел затормозить – его коньки просто потеряли сцепление со льдом. А вот шайба, благодаря трению качения, осталась во вратарской зоне – гол!
Или другой пример – знаменитый «гол-призрак» Бретта Халла в финале Кубка Стэнли 1999 года. Тот самый гол, который принес «Далласу» победу над «Баффало», но вызвал массу споров из-за положения ноги Халла в площади ворот. Так вот, с точки зрения физики, этот гол – яркая иллюстрация роли трения в игре. Если бы не сила трения между коньком Халла и льдом, он бы просто уехал за ворота вместе с шайбой. А если бы не трение качения шайбы о лед, она бы мгновенно остановилась после контакта с конькомвратаря. Но в реальности все сложилось иначе – и привело к одному из самых спорных голов в истории хоккея.
Впрочем, давай оставим споры историкам и болельщикам. А сами лучше подумаем вот о чем – как наши знания о трении могут помочь нам в реальной игре или тренировке? Ну, например, мы теперь точно знаем, что перед матчем нужно как следует наточить коньки – чтобы уменьшить трение скольжения, но сохранить хорошее сцепление при торможении и маневрировании. Или что шайбу лучше бросать с «подкруткой», закручивая ее – так она дальше пролетит за счет меньшего трения качения. Вроде бы мелочи, а в игре могут стать решающими!
Ну что, друг мой, не утомил ли я тебя своими рассуждениями о скользком и липком? Надеюсь, теперь ты будешь смотреть на лед не просто как на площадку для игры, а как на настоящий физический полигон, где в каждый момент времени разыгрываются маленькие драмы притяжения и отталкивания, скольжения и сцепления. Поверь, если однажды начнешь замечать эти нюансы – хоккей для тебя заиграет новыми красками!
Ну а мы с тобой на этом пока остановимся. Впереди у нас еще много интересного – и про аэродинамику шайбы, и про упругость клюшек, и даже про термодинамику ледовой арены. Но сегодня мы сделали большой шаг – от абстрактной теории к реальным хоккейным ситуациям. И я надеюсь, что после этой главы ты начнешь воспринимать физику не как сухую науку из учебников, а как живой и увлекательный мир, который буквально у нас под ногами – стоит лишь присмотреться!