Размер шрифта
-
+

Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии - стр. 2

Астрономы пришли к выводу, что источники, доступные для наблюдения LIGO, должны обладать намного более мощной гравитацией, чем обычные звезды и планеты. В идеале это события с участием ЧД. О существовании ЧД известно почти 50 лет. Большинство являются остатками звезд в 20 и более раз массивнее Солнца. Такие звезды ярко светят и гибнут в катаклизме (о котором свидетельствует вспышка сверхновой), причем их внутренняя часть коллапсирует в ЧД. Звездная материя «изымается» из Вселенной, оставляя на покинутом пространстве гравитационный отпечаток.

Две ЧД, которым предстоит образовать двойную систему, постепенно сближаются по спирали. По мере их сближения прилегающее пространство испытывает все большее возмущение, наконец они сливаются в одну вращающуюся ЧД, которая колеблет пространство и «звенит», порождая все новые волны, пока не успокоится и не затихнет. Чирп – сотрясение пространства, ускоряющееся и усиливающееся вплоть до момента слияния ЧД, а затем затухающее, – может зафиксировать LIGO. В нашей Галактике такой катаклизм случается реже чем раз в 1 млн лет. Однако подобное событие порождает сигнал, поддающийся регистрации LIGO, даже если происходит за 1 млрд световых лет[2] от нас – миллионы галактик находятся на меньшем расстоянии. Для обнаружения даже самых благоприятствующих наблюдению событий требуется невероятно чувствительная и очень дорогая аппаратура. В детекторах LIGO пучки мощного лазерного излучения проходят через четырехкилометровые трубы с вакуумом внутри и отражаются от зеркал, установленных в каждом торце труб. Анализируя параметры световых сигналов, можно выявить изменение расстояния между зеркалами, попеременно увеличивающегося и уменьшающегося при расширениях и сжатиях пространства. Амплитуда этого колебания чрезвычайно мала – около 0,0000000000001 см (1×10>–13 см), в миллионы раз меньше размера атома[3]. В обсерватории LIGO используется два одинаковых детектора, разнесенных на расстояние 3000 км, – один находится в штате Вашингтон, другой – в Луизиане. Единичный детектор реагировал бы на микросейсмические волны, проезжающие мимо транспортные средства и т. п. Чтобы исключить ложную тревогу, экспериментаторы берут в расчет лишь те события, которые регистрируются обоими детекторами.

Несколько лет LIGO ничего не обнаруживала. Обсерватория была модернизирована и вновь полноценно заработала в сентябре 2015 г., и тогда после десятилетий разочарований пришел успех – был зарегистрирован чирп, свидетельствующий о столкновении двух ЧД более чем в 1 млрд св. лет от Земли. Возникла новая область науки – экспериментальное исследование динамических характеристик пространства.

К сожалению, широко разрекламированные заявления ученых об открытиях иногда оказываются ошибкой или преувеличением. Подобное случалось и в этой сфере наук, примеры чего я привожу в своей книге. Я считаю себя скептиком, не склонным к легковерию. Но заявления исследователей, работающих с LIGO, – итог нескольких десятков лет усилий опытных ученых и инженеров – звучат убедительно, и на сей раз я уверен, что не разочаруюсь.

Получение этих данных – настоящий прорыв, одно из величайших открытий десятилетия, не уступающее по значимости открытию бозона Хиггса, вызвавшему ажиотаж в 2012 г. Существование бозона Хиггса являлось базисом Стандартной модели физики элементарных частиц, развивавшейся несколько десятилетий. Аналогично гравитационные волны – пульсации ткани пространства – важнейшее и принципиальное следствие ОТО Эйнштейна.

Страница 2