Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет - стр. 77
Однако вам нужно учитывать не только эти два измерения. В верхних слоях атмосферы могут проявляться одни закономерности, а в нижних слоях, над океанами и у поверхности Земли – совершенно иные. В трехмерной вселенной двукратное увеличение разрешения нашей сетки потребует восьмикратного повышения вычислительной мощности. Кроме этого, имеется и четвертое измерение – время. Если метеорологическая модель статична, в ней нет никакого толка – самое главное для нас состоит в том, чтобы знать, как меняется погода в каждый момент времени. Шторм движется со скоростью примерно 40 миль в час – если размеры вашей сетки составляют 40×40×40, то вы можете отслеживать его движение, собирая наблюдения каждый час. Однако если вы уменьшите размер сетки до 20×20×20, то шторм будет перемещаться из ячейки в ячейку каждые полчаса. Это значит, что вам нужно уменьшить в два раза и временной интервал, то есть вам потребуется в 16 раз больше вычислительных мощностей, чем изначально.
Но если бы эта проблема оказалась единственной, то ее вполне можно было бы решить. Хотя вам нужно, грубо говоря, в 16 раз увеличить вычислительную мощность, чтобы удвоить разрешение прогноза погоды, сама вычислительная мощность растет по экспоненте, удваиваясь примерно каждые два года{254}. Это значит, что вам нужно подождать всего восемь лет, и тогда ваш прогноз станет в два раза точнее; интересно, что NCAR обновляет свои суперкомпьютеры примерно с такой же частотой.
Предположим, что вам удалось разобраться с законами динамики движения жидкостей, которым подчиняются погодные системы. Они в целом следуют ньютоновским законам. Вам не будет особенно мешать и принцип неопределенности, интересный для физиков. Вы получили доступ к компьютерному шедевру типа Bluefire. Вы наняли Ричарда Лофта для проектирования и тестирования компьютерных программ. Что же еще может пойти не так в этом случае?
Почему теория хаоса так напоминает безумие
Итак, с чем может быть связана очередная ваша проблема? С теорией хаоса. Возможно, вам доводилось слышать выражение «взмах крыльев бабочки в Бразилии может привести к торнадо в Техасе». Изначально это было частью заглавия научной работы{255}, представленной в 1972 г. преподавателем Массачусетского технологического института Эдвардом Лоренцем, который начинал свою карьеру как метеоролог. Теория хаоса применима в отношении систем, для которых справедливы два утверждения:
1) системы динамичны, что означает, что поведение системы в один момент времени влияет на ее поведение в будущем;
2) системы нелинейны, иными словами, в них поддерживаются скорее экспоненциальные, а не аддитивные связи.
Динамические системы доставляют специалистам по прогнозированию немало проблем. Примером может служить описанный в главе 6 факт, свидетельствующий о том, что американская экономика постоянно вызывает цепную реакцию событий, что и является одной из причин, по которым ее развитие так сложно предсказать. Развитие при этом остается нелинейным: ценные бумаги, обеспеченные закладными, стимулировавшие начало финансового кризиса, были разработаны таким образом, что небольшие изменения в макроэкономических условиях значительно повышали риск дефолта по ним.
Совмещая все эти параметры, вы получаете на выходе настоящую неразбериху. Сам Лоренц не понимал, насколько масштабны эти проблемы, до тех пор пока (следуя той же традиции, что и Александр Флеминг и пенициллин