Просчитать будущее. Кто кликнет, купит, соврёт или умрёт - стр. 2
Прогнозная, или предиктивная, аналитика – не единственный вид аналитики, но, безусловно, наиболее интересный и важный из всех. Не думаю, что нам нужны новые книги, посвященные чисто описательной аналитике, которая показывает прошлое, но не дает понимания того, почему это произошло. В своих работах я также часто ссылаюсь на третий тип – «предписывающую» аналитику, которая объясняет, что делать, с помощью контролируемого эксперимента или оптимизации. Однако эти количественные методы намного менее популярны, чем прогнозный подход.
Книга и лежащие в ее основе идеи служат хорошим противовесом теории Нассима Николаса Талеба. В своих книгах, включая знаменитый труд «Черный лебедь», Талеб утверждает, что многие попытки прогнозирования обречены на неудачу вследствие случайной и непредсказуемой природы сложных событий. Без сомнения, он прав в том, что некоторые события действительно относятся к разряду «черных лебедей» и не поддаются прогнозированию, но дело в том, что во многих случаях человеческое поведение вполне стандартно и предсказуемо. Многочисленные примеры успешного прогнозирования, приводимые Сигелем, напоминают нам о том, что большинство лебедей – белые.
Сигель не входит в число приверженцев идеи «больших данных». Разумеется, некоторые из приведенных им примеров попадают в эту категорию, описывая ситуации с наличием слишком большого или неструктурированного объема данных, которым невозможно легко управлять при помощи обычных реляционных баз данных. Но качество прогнозной аналитики зависит не от относительного размера имеющихся у вас данных, а от того, что вы с ними делаете. Я обнаружил, что зачастую «чем больше данных, тем ничтожнее результаты», и многие приверженцы больших данных довольствуются их использованием для создания какого-нибудь визуально привлекательного аналитического продукта. Но это далеко не так ценно, как создание прогнозной модели.
Из-под пера Сигеля вышла книга одновременно сложная и доступная для понимания даже неискушенного читателя. В ней вы найдете множество увлекательных историй, красочных иллюстраций и занимательное повествование. Я бы рекомендовал ее к прочтению даже далеким от этой темы людям, поскольку вряд ли можно сомневаться в том, что на протяжении жизни их поведение подвергалось и еще не раз будет подвергаться внимательному анализу и прогнозированию. Кроме того, в своей профессиональной деятельности большинство людей будет все чаще сталкиваться с использованием прогнозных моделей, поэтому будет нелишним научиться их учитывать и оценивать и действовать в соответствии с ними.
Короче говоря, мы живем в «прогнозируемом» обществе. И лучший способ преуспеть в нем – понимать цели, методы и ограничения предиктивных моделей. А лучший способ понять их – прочитать эту книгу.
Томас Дэвенпорт,
профессор Гарвардской школы бизнеса, заслуженный профессор Колледжа Бабсон, один из основателей Международного института аналитики, соавтор книги «Аналитика как конкурентное преимущество» и нескольких других книг из этой области
Вступление
Прошлое – забыто. Будущее – закрыто. Настоящее – даровано, потому его и зовут настоящим.
Приписывается Алану Александру Милну, Биллу Кину и мастеру Угвею, мудрой черепахе из мультипликационного фильма «Кунг-фу панда»