Происхождение жизни. От туманности до клетки - стр. 44
Если паровой двигатель представляет собой замкнутую систему, т. е. не обменивается ни веществом, ни энергией с внешней средой, то горячий резервуар будет постепенно остывать, а холодный – нагреваться. В соответствии с формулой Карно получается, что чем дальше, тем меньшая доля тепловой энергии в такой системе может быть превращена в работу, а доля «недоступной» тепловой энергии будет расти. В 1865 году Р. Клаузиус, рассматривая эту недоступную тепловую энергию, ввел новую физическую величину – энтропию (S). Она отражает отношение тепловой энергии к температуре и имеет размерность джоуль на градус. В любом процессе, где происходит превращение энергии, энтропия растет либо в идеальном случае не убывает. Поэтому второй закон термодинамики называют еще «законом неубывания энтропии».
Пусть у нас в системе есть отдельные холодный и горячий резервуары, между которыми затем идет передача тепла, и их температура выравнивается. Можно сказать, что система вначале была упорядочена – поделена на горячую и холодную части, а потом перешла в беспорядочное, или хаотическое состояние. Мы видим, что, когда температура в системе выравнивается, уровень беспорядка (хаоса) в системе возрастает. Поскольку энтропия при этом тоже возрастает, возникает вопрос: нет ли связи между хаосом и энтропией? Действительно, связь между ними есть. Как доказал в 1872 году Л. Больцман, энтропия является мерой неупорядоченности системы:
S = klnP,
где k – универсальная постоянная Больцмана (3,29 × 10–24 кал/град), а P – мера неупорядоченности системы.
Мера неупорядоченности P определяется как «количество микросостояний, которыми реализуется данное макросостояние». Что это значит? Попробуем объяснить на простейшем примере. Пусть у нас есть сосуд, в котором находятся четыре одинаковые молекулы газа. Каждая молекула может находиться с равной вероятностью в левой или в правой половине сосуда. Почему маловероятно, что все четыре молекулы окажутся в одной половине? Потому что движутся они независимо друг от друга, и по правилам комбинаторики в такой системе есть 16 вариантов расположения молекул. Это будут микросостояния. Макросостояния – это обезличенные описания ситуации в сосуде, когда мы не отличаем молекулы друг от друга. Макросостояний возможно пять: все молекулы слева; три слева, одна справа; две слева, две справа; одна слева, три справа; и все молекулы справа. Понятно, что макросостояние «все слева» реализуется только одним микросостоянием (каждая из четырех молекул должна быть слева). Макросостояние «два слева, два справа» можно получить шестью разными способами: слева могут быть молекулы 1 и 2; 1 и 3; 1 и 4; 2 и 3; 2 и 4; 3 и 4. Иначе говоря, для более упорядоченного состояния «все слева» Р = 1, а для неупорядоченного состояния «два слева, два справа» Р = 6. Если мы рассматриваем не четыре молекулы в сосуде, а, скажем, 1022 (10 000 миллиардов миллиардов) – примерно столько молекул воздуха находится в объеме обычного стакана, то состояние, когда молекулы поровну распределены между половинами стакана, реализуется примерно 1044 микросостояниями, а состояние, когда весь воздух собрался в одной половине стакана, – только одним. Отсюда понятно, почему заполнение воздухом половины стакана – крайне маловероятное событие, которое никто никогда не видел.