Размер шрифта
-
+

Происхождение жизни. От туманности до клетки - стр. 33

Xe. Однако его избыток по сравнению с обычным соотношением изотопов (известным применительно к метеоритам, где отношение йод/ксенон гораздо ниже) в атмосфере Земли очень мал, а в мантии – немного больше. Это значит, что, пока >129I на Земле еще был, происходили свободный выход ксенона из мантии в атмосферу и активная потеря из атмосферы в космос. Примерно через 50 млн лет от начала Солнечной системы, когда >129I почти закончился, эти процессы прекратились. Тяжелые изотопы ксенона >132Xe, >133Xe и >136Xe образуются при делении ядер плутония >244Pu с периодом полураспада около 80 млн лет. Их содержание на Земле дает такие же оценки времени потери ксенона и свободного выхода из мантии в атмосферу. Эта датировка хорошо согласуется с гафний-вольфрамовой датировкой образования Луны и подтверждает, что гигантский удар, породивший Луну, был последним в истории Земли.



Эпизоды «океана магмы», следовавшие после каждого такого удара, приводили к массированному выходу газов из мантии в атмосферу. С переходом от «океана магмы» к тектонике плит выход газов сильно замедлился, но продолжается. Судя по содержанию калия в горных породах, 30–40 % изотопа >40Ar, возникшего при распаде калия, остается в глубинах Земли, но остальная часть вышла в атмосферу.

Мегаимпакты и атмосфера

Процесс образования Земли должен был включать несколько десятков крупных столкновений планетных зародышей. Выделение энергии при таких ударах (они еще называются мегаимпактами) приводило к расплавлению поверхности Земли до состояния «океана магмы». Эпизоды «океана магмы» после гигантских столкновений могли продолжаться по 1–2 млн лет благодаря парниковому эффекту от плотной атмосферы из СО>2 и паров воды, давление которой могло в 500 раз превышать современное (Martin et al., 2006). Кроме того, в момент столкновения может происходить потеря атмосферы в космос. Сначала ударная волна разгоняет часть атмосферы до скорости выше второй космической, а потом выделяющиеся при столкновении твердых тел раскаленные пары силикатов и железа с температурой выше 10 000 °C разогревают атмосферу настолько, что ее молекулы улетают в космос за счет теплового движения.

По расчетам получается, что степень потери атмосферы очень сильно зависит от энергии столкновения. Столкновение Тейи с Землей должно было вызвать потерю более 90 % существовавшей до того атмосферы (Stewart et al., 2014). Однако падение на Землю более мелких протопланет или столкновение двух аналогов Тейи между собой приводит к потере не более 20 % атмосферы. Так что игра случая в ходе роста планет земной группы могла привести к тому, что Венера сохранила больше газов из первичной атмосферы, чем Земля, если она росла из более мелких зародышей.

Климат и парниковый эффект

Атмосфера сильнейшим образом влияет на климат планеты, тепловой баланс которой складывается из нескольких источников: излучения Солнца и выделения тепла в недрах планеты благодаря радиоактивному распаду, гравитационной дифференциации и приливному трению. Тепло уходит в космос путем инфракрасного излучения через атмосферу, поэтому прозрачность атмосферы для видимого света (основной путь энергии к планете) и инфракрасного излучения может очень сильно влиять на температуру планеты. Например, Венера получает в три раза меньше энергии на квадратный метр, чем Меркурий, однако температура ее поверхности почти на 200 °C выше – благодаря парниковому эффекту от плотной углекислотной атмосферы. Кроме того, атмосфера распределяет тепло по поверхности планеты, поэтому перепады температур между дневным и ночным полушарием Венеры не превышают долей градуса, а на безатмосферном Меркурии они составляют порядка 300 °C.

Страница 33