От микроорганизмов до мегаполисов. Поиск компромисса между прогрессом и будущим планеты - стр. 42
И распределение Вейбулла, изначально разработанное для изучения вероятности отказа вследствие изменения свойств материала (Weibull, 1951) и используемое в тестах на надежность в инжиниринге, легко модифицируется для получения гибкой функции роста, которая может дать самые разнообразные сигмоидальные функции роста. Оно используется в лесном хозяйстве для моделирования высоты и объемного прироста отдельных видов деревьев, а также объема и возраста полиморфических лесных насаждений (Yang et al., 1978; Buan and Wang, 1995; Gómez-García et al., 2013). Двумя последними пополнениями по-прежнему растущего семейства сигмоидальных кривых являются новое уравнение роста, разработанное Берчем (Birch, 1999), и уже упоминавшаяся обобщенная логистическая функция Цулариса (Tsoularis, 2001). Берч модифицировал уравнение Ричардса, чтобы оно лучше подходило для универсальных имитационных моделей, особенно для представления роста различных видов растений с отличающимися вегетационными периодами, тогда как Цуларис (Tsoularis, 2001) предложил уравнение обобщенного логистического роста, включающее все прежде использовавшиеся функции в качестве особых случаев.
Логистические кривые являются любимым инструментом специалистов по прогнозам благодаря их способности отражать, часто очень точно, траектории роста как живых организмов, так и антропогенных артефактов и процессов. Конечно, с их помощью можно сделать ценные открытия, но в то же время я должен предостеречь от излишнего энтузиазма при использовании логистических кривых в качестве инструментов прогнозирования отказоустойчивости. В своем вердикте Ноэль Бонней (Noel Bonneuil, 2005, 267) вспоминал «золотой век логистической кривой, когда Перл с энтузиазмом применял одну и ту же функцию к любому случаю роста, от длины хвостов крыс до данных переписи населения США» и развенчал заявления об удивительно точном применении этой модели к историческим данным, назвав их «сомнительным триумфом: большинство процессов ограниченного роста действительно напоминают логистические, но это мало способствует пониманию исторических процессов… Подбор кривых слишком часто вводит в заблуждение по двум направлениям: его не только не следует использовать в качестве эмпирического доказательства, но он может скрывать важные детали».
Очевидно, что применение этих кривых для долгосрочного прогнозирования не гарантирует успеха. Их использование может давать новые идеи и обеспечивать представление о пределах, и в этой книге я представлю примеры из прошлого, когда прогнозы оказывались очень точными и могли служить надежным признаком ближнесрочного роста. Но в других случаях даже высокоточное логистическое соответствие прошлых траекторий приводило к обманчивым выводам о предстоящем росте, а ошибки прогнозов превосходили ожидаемые и приемлемые ±10–25 % отклонений за период в 10–20 лет.
В один из первых обзоров логистических трендов, опубликованных в конце Второй мировой войны, Харт (Hart, 1945) включил данные о скорости самолетов в период между 1903 и 1938 годами: эта траектория очень близко соответствовала логистической кривой с точкой перегиба в 1932 году и максимальной скоростью около 350 км/ч, но за десять лет после этого технический прогресс дважды опроверг его вычисления. Во-первых, рост мощности поршневых двигателей (на которых работали самолеты в военное время) достиг практических пределов, и вскоре их стали применять в пассажирских авиаперевозках. Самолет Lockheed L–1049 Super Constellation, впервые поднявшийся в воздух в 1951 году, имел крейсерскую скорость 489 км/ч и максимальную скорость 531 км/ч, что примерно на 50 % выше предсказанной логистическим потолком Харта.