Размер шрифта
-
+

Оптимизация в Python - стр. 20

6. memory_profiler: Этот профилировщик позволяет анализировать использование памяти в вашем коде, выявлять утечки памяти и оптимизировать работу с памятью.

7. SnakeViz: SnakeViz – это инструмент для визуализации результатов профилирования. Он позволяет вам более наглядно анализировать и интерпретировать статистику, полученную от других профилировщиков.

Какой профилировщик выбрать, зависит от ваших конкретных потребностей и целей. Каждый из них имеет свои особенности и может быть более или менее подходящим для определенных задач. Поэтому рекомендуется ознакомиться с ними и выбрать тот, который наилучшим образом соответствует вашим потребностям при оптимизации и анализе производительности вашего Python-приложения.



2.3. Модули для анализа производительности и визуализация результата

Анализ производительности и визуализация результатов – важная часть разработки программного обеспечения.

Рассмотрим примеры с использованием модулей для анализа производительности и визуализации результатов.

Пример с cProfile и визуализацией результатов с использованием SnakeViz:

```python

import cProfile

import snakeviz

def my_function():

result = 0

for i in range(1, 10001):

result += i

return result

if __name__ == "__main__":

cProfile.run('my_function()', filename='my_profile.prof')

snakeviz.view('my_profile.prof')

```

В этом примере мы используем `cProfile` для профилирования функции `my_function()`. Результат сохраняется в файл `'my_profile.prof'`. Затем мы используем `snakeviz` для визуализации результатов. Вызов `snakeviz.view('my_profile.prof')` откроет интерактивный веб-отчет с информацией о времени выполнения функций.

Пример с line_profiler и визуализацией результатов с использованием SnakeViz:

```python

from line_profiler import LineProfiler

import snakeviz

lp = LineProfiler()

@lp.profile

def my_function():

result = 0

for i in range(1, 10001):

result += i

return result

if __name__ == "__main__":

my_function()

lp.print_stats()

lp.dump_stats('my_profile.lprof')

snakeviz.view('my_profile.lprof')

```

В этом примере мы используем `line_profiler` для построчного профилирования функции `my_function()`. Результат сохраняется в файл `'my_profile.lprof'`. Затем мы снова используем `snakeviz` для визуализации результатов, вызывая `snakeviz.view('my_profile.lprof')`. Это позволит вам просматривать статистику времени выполнения построчно.

Пример с memory_profiler и визуализацией результатов с использованием SnakeViz:

```python

from memory_profiler import profile

import snakeviz

@profile

def my_function():

big_list = [i for i in range(1000000)]

return sum(big_list)

if __name__ == "__main__":

my_function()

snakeviz.view('my_function.mprof')

```

В этом примере мы используем `memory_profiler` для профилирования использования памяти функцией `my_function()`. Результат сохраняется в файл `'my_function.mprof'`. Затем мы снова используем `snakeviz` для визуализации результатов, вызывая `snakeviz.view('my_function.mprof')`. Это создаст интерактивный отчет о памяти, использованной вашей функцией.

Таким образом, с использованием SnakeViz вы можете визуализировать результаты профилирования, сделанные с помощью различных модулей, для более наглядного и удобного анализа производительности вашего Python-кода.


Глава 3: Оценка времени выполнения алгоритмов

Страница 20