Оценка компаний: Анализ и прогнозирование с использованием отчетности по МСФО - стр. 10
Теперь представим, что мы знаем ставку дисконтирования для потока дивидендов (свободного денежного потока), которые ожидаем получить от компании. Чтобы преобразовать все будущие денежные потоки в текущие значения, мы можем использовать стандартную формулу дисконтирования:
где PV – текущая стоимость денежного потока в году t (CF>t), дисконтированного по ставке, равной стоимости акционерного капитала (k).
Заранее не известно, когда может прекратиться деятельность компании. Поэтому в отличие от того, как поступают с облигациями, мы дисконтируем денежный поток, продолжающийся до бесконечности. Это одна из проблем, возникающих при оценке акций. Другая состоит в том, что даже среднесрочные изменения денежных потоков сложно предвидеть. Таким образом, если мы не хотим прибегать к использованию бесконечно длинных таблиц, в какой-то момент нужно остановиться и предположить, что начиная с этой точки темп роста компании будет постоянным. Он может быть отрицательным, нулевым или положительным, но обычно принимается положительным.
Как можно рассчитать текущую стоимость потока, который будет расти бесконечно (рис. 1.1)?
Проблема заключается в том, что каждый прогнозируемый показатель больше предшествующего. Но решение есть. Если ставка дисконтирования больше темпа роста, то дисконтированный поток дивидендов к текущим (приведенным) значениям будет уменьшаться (рис. 1.2).
Приведенные значения уменьшаются, поэтому они меньше влияют на результат. Существует простая формула определения величины, к которой стремится сумма текущих значений, когда поток дивидендов не ограничен во времени. Она известна как модель роста Гордона и записывается следующим образом:
где V – текущая стоимость, D – величина дивидендов последнего года, g – темп роста и k – ставка дисконтирования. Очевидно, данная модель дает разумный результат, если ставка дисконтирования превышает темп роста (k>g). (Доказательство модели Гордона дано в приложении.) Поскольку модель Гордона является общей формулой для оценки бесконечных потоков с постоянным темпом роста, она применима в равной степени для оценки как потока дивидендов, так и генерируемого денежного потока.
Это все, что нам требуется для оценки компании. Мы прогнозируем наши финансовые показатели на несколько лет вперед, принимаем как предпосылку постоянный темп роста, затем конвертируем поток дивидендов после последнего прогнозируемого года в так называемую терминальную (конечную) стоимость. Если мы сложим текущую стоимость дивидендных выплат в прогнозируемом периоде и дисконтированную величину конечной стоимости (поскольку эта стоимость относится к концу прогнозного периода и мы должны привести ее к текущему моменту), то получим сегодняшнюю оценку акционерного капитала компании.
В табл. 1.2 приведена оценка компании «Простая К°», которая выплачивает дивиденды, возрастающие за следующие пять лет с 5 до 9 (очевидно, этот рост не соответствует постоянной ставке, выраженной в сложных процентах), а затем растущие на 5 % в год с базового уровня 10 в шестом году. Поскольку год 6 используется в качестве базы для оценки всех дивидендов, выплачиваемых в этом и всех последующих годах, его часто называют «терминальным» годом. Если мы применяем модель Гордона (модель роста), то при ставке дисконтирования 10 будущая оценка конечной стоимости составит 200. Это означает, что стоимость акционерного капитала компании «Простая К°» через пять лет будет составлять 200. Однако нас интересует текущая оценка. Поэтому нам потребуется пять множителей дисконтирования дивидендов отдельных лет и конечной стоимости. Стандартная формула дисконтирования стоимости выглядит так: