Размер шрифта
-
+

Нейросети. Обработка естественного языка - стр. 19

Далее, вы можете создать модель BiRNN и обучить ее на этом обучающем наборе данных, а также протестировать ее на новых текстах для распознавания именованных сущностей.

Сверточные нейронные сети (CNN):

CNN, которые изначально разрабатывались для обработки изображений, также нашли применение в NLP. Сверточные слои в CNN могут применяться к тексту так же, как они применяются к изображениям, с учетом локальных контекстов. Это дало начало таким архитектурам, как Convolutional Neural Network for Text (CNN-text), и позволило обрабатывать тексты в NLP:

– Классификация текста:


Классификация текста с использованием сверточных нейронных сетей (CNN) – это мощный метод, который позволяет определять, к какой категории или метке относится текстовый документ. В данном разделе мы рассмотрим этот процесс подробнее на примере. Предположим, у нас есть набор новостных статей, и наша задача – классифицировать их на несколько категорий, такие как "Политика", "Спорт", "Экономика" и "Наука".

Шаги классификации текста с использованием CNN:

Подготовка данных:

– Сначала необходимо собрать и подготовить набор данных для обучения и тестирования. Этот набор данных должен включать в себя тексты статей и соответствующие метки (категории).

Токенизация и векторизация:

– Тексты статей нужно токенизировать, разбив их на слова или подслова (токены). Затем каждый токен представляется вектором, например, с использованием методов word embedding, таких как Word2Vec или GloVe. Это позволяет нейросети работать с числовыми данными вместо текста.

Подготовка последовательностей:

– Токенизированные тексты преобразуются в последовательности фиксированной длины. Это важно для того, чтобы иметь одинаковую длину входных данных для обучения модели.

Создание CNN модели:

– Далее создается модель сверточной нейронной сети (CNN). Модель состоит из нескольких слоев, включая сверточные слои и пулинг слои. Сверточные слои используются для извлечения признаков из текста, а пулинг слои уменьшают размерность данных.

– После сверточных слоев добавляются полносвязные слои для классификации текста по категориям.

Компиляция модели:

– Модель компилируется с оптимизатором, функцией потерь и метриками. Функция потерь обычно является категориальной кросс-энтропией для многоклассовой классификации, а метрикой может быть точность (accuracy).

Обучение модели:

– Модель обучается на обучающем наборе данных в течение нескольких эпох. В процессе обучения модель корректирует свои веса и настраивается для лучшей классификации текста.

Оценка и тестирование:

– После обучения модель оценивается на тестовом наборе данных для оценки ее производительности. Метрики, такие как точность, полнота и F1-мера, могут использоваться для измерения качества классификации.

Применение модели:

– После успешного обучения модель можно использовать для классификации новых текстовых документов на категории.

Пример кода на Python с использованием библиотек TensorFlow и Keras для классификации текста с использованием CNN:

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence import pad_sequences

Страница 19