Размер шрифта
-
+

Нейросети начало - стр. 4


model = keras.Sequential([

keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),

keras.layers.MaxPooling2D((2, 2)),

keras.layers.Conv2D(64, (3, 3), activation='relu'),

keras.layers.MaxPooling2D((2, 2)),

keras.layers.Conv2D(64, (3, 3), activation='relu'),

keras.layers.Flatten(),

keras.layers.Dense(64, activation='relu'),

keras.layers.Dense(10, activation='softmax')

])


Затем мы можем скомпилировать модель, задав функцию потерь, оптимизатор и метрики для оценки качества модели.

model.compile(optimizer='adam',

loss='sparse_categorical_crossentropy',

metrics=['accuracy'])


После этого мы можем запустить процесс обучения, передав в модель данные для обучения и тестирования и указав количество эпох (итераций) и размер батча (количество примеров, обрабатываемых за одну итерацию).

model.fit(train_images, train_labels, epochs=5, batch_size=64, validation_data=(test_images, test_labels))


Наконец, мы можем оценить качество модели на тестовых данных.


test_loss, test_acc = model.evaluate(test_images, test_labels)

print('Test accuracy)

Результатом обучения нейросети для распознавания цифр на изображениях будет модель, которая способна принимать на вход изображение с рукописной цифрой и предсказывать, какая цифра на изображении изображена.

Этот код позволяет обучить нейросеть для распознавания объектов на изображениях, а именно для классификации изображений из набора CIFAR-10. Обученная нейросеть может быть использована для распознавания объектов на других изображениях, которые не были использованы в обучающей выборке. Для этого достаточно подать изображение на вход нейросети и получить ответ в виде вероятности принадлежности к каждому из классов.

Для проверки точности модели можно использовать тестовый набор изображений с известными метками (т.е. правильными ответами) и сравнивать предсказания модели с этими метками. Чем выше точность модели на тестовых данных, тем более успешно она справляется с задачей распознавания цифр.

После обучения модели ее можно использовать для распознавания цифр на новых изображениях, например, в приложении для считывания рукописных цифр на почтовых индексах, на банковских чеках или в других сферах, где требуется автоматическое распознавание цифр.

2. Пример кода «Автоматическое распознавание речи».

Для реализации второго примера в среде TensorFlow нам понадобится набор данных CIFAR-10, который можно загрузить с помощью встроенной функции TensorFlow.

Набор CIFAR-10 содержит 60000 цветных изображений размером 32х32 пикселя, разделенных на 10 классов. Для обучения нейросети мы будем использовать 50000 изображений, а для тестирования – оставшиеся 10000.

Вот как выглядит реализация второго примера в TensorFlow:


import tensorflow as tf

from tensorflow import keras

from tensorflow.keras import layers

# Определение архитектуры нейросети

model = keras.Sequential(

[

layers.LSTM(128, input_shape=(None, 13)),

layers.Dense(64, activation="relu"),

layers.Dense(32, activation="relu"),

layers.Dense(10, activation="softmax"),

]

)

# Компиляция модели

model.compile(

optimizer=keras.optimizers.Adam(learning_rate=0.001),

loss=keras.losses.CategoricalCrossentropy(),

metrics=["accuracy"],

)

# Загрузка звукового файла

audio_file = tf.io.read_file("audio.wav")

audio, _ = tf.audio.decode_wav(audio_file)

Страница 4