Размер шрифта
-
+

Научные открытия - стр. 3

Решение: M1 = бесконечность, N = 140, бесконечность –?

Согласно формуле М1 * M2 * Mn * L = N получаем бесконечность * L = 140

Ответ: До подсчета мальчик имел бесконечность карандашей в количестве 140 штук при неизвестной величине L.

Теорема 8. Любое ошибочное число Х не подлежит исправлению, потому что за ним следует число Y. Ошибочное число Х принимается произошедшим, а значит явным. Правка числа Х не приведет к верному решению.

X * У = Т, где Т – решение

Доказательство:

Пусть Х = 2, У = 3, тогда подставив значения в формулу X * У = Т, получаем 2 * 3 = 6. Таким образом мы определили, что Т = 6. Поменяем значение Х = 3, тогда 3 * 3 = 9, где Т = 9. В первом случае Т имело другое значение, чем во втором. Таким образом, ошибочное число Х не подлежит исправлению.

Пример. Наташа купила 5 яблок, одно из которых съела по дороге домой. Сколько принесла бы домой яблок Наташа, если бы она не съела одно яблоко?

Решение: Х = 5, У = 1 – 1. Во втором случае Х = 5, У = 1, Т – ?

Подставим значения в формулу X * У = Т, получим в первом случае 5 * 1 – 1 = 4, а во втором 5 * 1 = 5

Ответ: Если бы Наташа не съела одно яблоко, то она принесла бы домой 5 яблок.

Теорема 9. Любое число А позволяет использовать счет В, но у любого числа и счета есть некая характеристика N.

А * N = В * N

Доказательство:

Пусть А = 2, N = 5. Определяя число В по формуле А * N = В * N, получим 2 * 5= ? * 5. Значит счет В как и число А имеет значение равное 2.

Пример. У Алены остался один мяч, в то время как второй мяч она отдала Коле. Сколько у ребят было мячей?

Решение: А = 1, В = 1, A + B – ?

Подставим значения в формулу А * N = В * N, получим 1 * N = 1 * N, где N – это Алена и Коля. Тогда 1 N + 1 N = 2 N.

Ответ: У ребят было два мяча.

Теорема 10. Число, увеличенное (уменьшенное) во много раз всегда имело свое первоначальное значение, которое потребовалось другому числу увеличить (уменьшить).

A = A * M = B или А = А : М = В, где А – число, М – много раз, В – другое число

Доказательство:

Пусть А первоначально равнялось 2. Увеличив число А в пять раз, согласно формуле A = A * M = B мы получим 2 = 2 * 5 = 10. И наоборот.

Пусть А = 4. Уменьшив число А в два раза, согласно формуле A = A * M = B мы получим 4 = 4 : 2 = 2.

Следовательно, число А путем увеличение (уменьшения) привело нас к числу В.

Пример. После дня рождения у Ромы было 10 машинок. Сколько первоначально было машинок у Ромы?

Решение: В = 10, М – неизвестно, А –?

Подставим значения в формулу A = A * / M = B и получим А = А * / М = 10. Не зная данных по увеличению или уменьшению машинок, мы не можем узнать первоначальное количество машинок.

Ответ: Мы не можем узнать первоначальное количество машинок.

Теорема 11. Любая плоскость представляет собой сумму значений Xn. При изменении значения n меняется сама плоскость.

Доказательство:

Квадрат имеет 4 вершины или Х4

Треугольник 3 вершины или Х3

Прямая – Х2

Круг – Хn

В начале мы имели круг – Хn. Если Хn уменьшить на множественное значение n, то мы рано или поздно получим Х4 (квадрат).

Х4 – 1 = Х3 (треугольник)

Х3 – 1 = Х2 (прямая)

Х2 – 1 = Х1 (точка)

Следовательно при увеличении точек Х1 увеличивается и сама плоскость.

Пример. Андрей на уроках труда вырезал из квадрата треугольник. Сколько треугольников у него получилось?

Решение: Квадрат Х = 4, треугольник Х = 3, то 4 – 1 = 3, где 1 – это прямая, которая имеет 2 конечные точки. Тогда 4 (квадрат) – 2 (прямая) = 2 (два треугольника)

Страница 3