ML для новичков: Глоссарий, без которого ты не разберёшься - стр. 17
Пример кода для разделения данных на обучающую и тестовую выборки с помощью Scikit-learn: `from sklearn.model_selection import train_test_split; train_data, test_data = train_test_split(data, test_size=0.2)`.
Особенности работы с разными типами данных
В зависимости от типа данных, с которыми вы работаете (например, числовые, категориальные, текстовые или временные ряды), могут потребоваться различные подходы к их подготовке.
1. Числовые данные. Кроме стандартизации и нормализации, стоит также обратить внимание на выбросы. Они могут сильно исказить результаты. Метод z-оценки помогает выявить и удалить аномальные значения: `outliers = data[(data – data.mean()).abs() > 3 * data.std()]`.
2. Категориальные данные. Эти данные нужно преобразовывать в числовой формат. Обычно используется метод one-hot кодирования: `data = pd.get_dummies(data, columns=['categorical_column'])`.
3. Текстовые данные. Необходимо пройти процесс токенизации и векторизации. Обычно применяются методы TF-IDF или векторные представления слов. Пример векторизации: `from sklearn.feature_extraction.text import TfidfVectorizer; vectorizer = TfidfVectorizer(); X = vectorizer.fit_transform(documents)`.
4. Временные ряды. В таких данных важны дополнительные метрики, такие как скользящие средние или сезонные компоненты. Эти преобразования помогают выявить приросты и уточнить предсказания.
Задачи во время подготовки данных
Подготовка данных включает не только очистку и преобразование, но и несколько дополнительных задач:
– Выбор признаков. Определите ключевые атрибуты, которые будут использоваться для обучения модели. Существует множество методов, включая использование корреляционной матрицы или методов отбора и снижения размерности (например, метод главных компонент).
– Искусственное создание данных. Если данных недостаточно, можно использовать методы увеличения данных, такие как поворот, сжатие и отражение для изображений. В текстах можно варьировать формулировки.
– Анализ и визуализация. Прежде чем переходить к модели, полезно провести визуальный анализ данных. Вы можете использовать библиотеку Matplotlib или Seaborn в Python для построения графиков, что поможет выявить паттерны и закономерности.
Заключение
Роль данных в машинном обучении нельзя переоценить. Правильная подготовка данных – это залог успешного обучения модели и получения достоверных результатов. От качества данных зависит не только точность прогнозов, но и возможность улучшения следующих итераций разработки. Обратите внимание на каждую стадию, начиная от сбора до анализа, и используйте приведенные методы и примеры, чтобы достичь наилучшего результата в своих проектах. Это вложение в качество данных непременно окупится, открывая новые горизонты в исследовании и анализе.
Процесс подготовки данных для обучения
Подготовка данных – это ключевой этап в процессе машинного обучения, который зачастую определяет успех всей модели. Это включает в себя множество действий, направленных на очищение, преобразование и адаптацию данных к конкретным требованиям алгоритмов. В этой главе мы рассмотрим основные шаги подготовки данных, их важность, а также конкретные методики и инструменты, которые помогут вам добиться наилучших результатов.
Сбор данных
Этап сбора данных подразумевает получение необходимой для обучения информации, начиная от открытых источников и заканчивая внутренними базами данных вашей компании. Важно, чтобы данные были актуальными и репрезентативными для решаемой задачи. Например, если вы разрабатываете модель для предсказания цен на жилье, соберите данные о различных характеристиках недвижимости (площадь, количество комнат, расположение и т. д.) из надежных источников, таких как агентства недвижимости или открытые базы данных.