Размер шрифта
-
+

Машинное обучение - стр. 20

– Получается индекс выбранного фильма.

– Вычисляется список схожести выбранного фильма с остальными фильмами.

– Список сортируется по убыванию схожести.

– Выбираются топ-N фильмов на основе сходства.

– Возвращается список рекомендуемых фильмов.

7. Запрашивается у пользователя название фильма, для которого необходимо получить рекомендации.

8. Вызывается функция `get_recommendations()` с передачей ей названия фильма, матрицы сходства и данных о фильмах.

9. Выводятся на экран рекомендованные фильмы.

Программа использует алгоритм контентной фильтрации на основе TF-IDF и косинусного сходства для рекомендации фильмов на основе их текстовых описаний. Она преобразует текстовые данные в числовые векторы с использованием TF-IDF и затем вычисляет сходство между фильмами. Рекомендуемые фильмы выбираются на основе сходства с выбранным фильмом. Это позволяет предлагать пользователю фильмы, которые имеют схожие характеристики и описания с фильмами, которые он предпочитает.

Глава 3: Подготовка данных для машинного обучения

Качество данных определяет качество решений. Тщательная подготовка данных – залог успешного машинного обучения и эффективного бизнеса.

В процессе применения машинного обучения в бизнесе подготовка данных играет важную роль. Качество данных определяет эффективность моделей машинного обучения и точность результатов, которые они предоставляют. В этой главе мы рассмотрим различные аспекты и задачи, связанные с подготовкой данных, и объясним, почему они важны для бизнеса.

Одной из причин, почему мы будем рассматривать подготовку данных, является достижение высокого качества прогнозов и решений. Чистые и точные данные являются основой для создания моделей машинного обучения, которые могут давать надежные прогнозы и принимать обоснованные решения. Подготовка данных помогает устранить шум, выбросы и другие аномалии, что повышает точность прогнозов и решений.

Другой важной ролью подготовки данных является оптимизация бизнес-процессов. Анализ данных, включенный в процесс подготовки, позволяет лучше понять структуру и особенности данных. Это помогает оптимизировать бизнес-процессы и принимать обоснованные решения на основе данных. Например, анализ данных может выявить паттерны потребительского поведения, что позволит оптимизировать маркетинговые стратегии и улучшить взаимодействие с клиентами.

Также подготовка данных играет роль в персонализации и улучшении опыта клиента. Понимание предпочтений и потребностей клиентов на основе анализа данных позволяет создавать более персонализированные предложения и предлагать индивидуальные рекомендации. Это повышает уровень удовлетворенности клиентов и улучшает их опыт использования продуктов и услуг.

В данной главе мы рассмотрим различные задачи, связанные с подготовкой данных, включая сбор данных, очистку от шума и аномалий, анализ данных и обработку категориальных данных. Мы также рассмотрим методы и инструменты, которые помогут вам эффективно подготовить данные для использования в моделях машинного обучения.

3.1. Сбор, очистка и преобразование данных

В мире машинного обучения и анализа данных сбор, очистка и преобразование данных играют ключевую роль. Эти этапы являются неотъемлемой частью подготовки данных перед применением алгоритмов машинного обучения. В этой главе мы рассмотрим, почему эти действия важны и как они влияют на результаты анализа данных и принятие решений в бизнесе.

Страница 20