Размер шрифта
-
+

Машинное обучение - стр. 17

sparse_ratings = csr_matrix(ratings)

# Применение SVD для получения матриц U, Sigma и Vt

U, Sigma, Vt = svds(sparse_ratings, k)

# Построение диагональной матрицы Sigma

Sigma = np.diag(Sigma)

return U, Sigma, Vt

# Функция рекомендации фильмов для пользователя

def recommend_movies(user_id, ratings, U, Sigma, Vt, num_recommendations=5):

user_ratings = ratings[user_id]

predicted_ratings = np.dot(np.dot(U[user_id, :], Sigma), Vt)

# Исключение уже оцененных фильмов из рекомендаций

predicted_ratings[user_ratings != 0] = -1

top_movies = np.argsort(predicted_ratings)[::-1][:num_recommendations]

return top_movies

# Пример использования

user_id = 0

k = 2 # Размерность скрытого пространства

U, Sigma, Vt = perform_svd(ratings, k)

recommended_movies = recommend_movies(user_id, ratings, U, Sigma, Vt)

print(f"Рекомендуемые фильмы для пользователя {user_id}:")

for movie_id in recommended_movies:

print(f"Фильм {movie_id}")

```

В данном примере используется алгоритм Singular Value Decomposition (SVD) для выполнения сингулярного разложения матрицы оценок пользователей. Полученные матрицы U, Sigma и Vt представляют собой аппроксимацию исходной матрицы оценок с использованием латентного пространства низкой размерности.

Функция `perform_svd` выполняет сингулярное разложение матрицы оценок с помощью функции `svds` из модуля `scipy.sparse.linalg`. Разложение возвращает матрицы U, Sigma и Vt.

Функция `recommend_movies` принимает идентификатор пользователя, матрицу оценок, а также матрицы U, Sigma и Vt в качестве аргументов. Она вычисляет предсказанные оценки для пользователя и рекомендует фильмы, имеющие наивысшие предсказанные оценки, исключая уже оцененные фильмы.

В приведенном примере выводится список рекомендованных фильмов для пользователя с идентификатором 0. Количество рекомендаций задается параметром `num_recommendations`.

Singular Value Decomposition (SVD), или Сингулярное разложение, является мощным алгоритмом линейной алгебры, который используется в различных областях, включая рекомендательные системы, сжатие данных, обработку изображений и многие другие.

Сингулярное разложение позволяет представить матрицу в виде произведения трех матриц: U, Sigma и Vt. Формально, для матрицы A размерности m x n SVD определяется следующим образом:

A = U * Sigma * Vt,

где U – матрица размерности m x m, содержащая левые сингулярные векторы,

Sigma – диагональная матрица размерности m x n, содержащая сингулярные значения,

Vt – транспонированная матрица размерности n x n, содержащая правые сингулярные векторы.

Сингулярные значения в матрице Sigma являются неотрицательными числами и упорядочены по убыванию. Они представляют собой меру важности каждого сингулярного вектора и определяют вклад каждого сингулярного вектора в исходную матрицу A.

При использовании SVD в рекомендательных системах, например, матрица A представляет собой матрицу оценок пользователей, где строки соответствуют пользователям, а столбцы – элементам (фильмам, продуктам и т.д.). SVD разделяет матрицу на скрытые факторы, представленные сингулярными векторами, и связывает их с пользователями и элементами. Это позволяет рекомендовать пользователям элементы, которые им могут понравиться, на основе сходства с другими пользователями или элементами.

Алгоритм SVD имеет несколько вариаций, которые могут быть использованы в зависимости от контекста и требований задачи. Некоторые из них включают Truncated SVD (SVD с ограниченным числом сингулярных значений), Implicit Matrix Factorization (IMF) и другие.

Страница 17