Размер шрифта
-
+

Максвелловская научная революция - стр. 12

твердого ядра программы Ампера-Вебера, соединив их с рядом «полевых» идей Фарадея и положений оптики Юнга и Френеля, но и была открыта для синтеза с другими исследовательскими традициями. Я полагаю, что данное обстоятельство имеет немаловажное значение для авторской версии методологии научно-исследовательских программ (см. подробнее: Нугаев, 2010), позволяя не столько подтвердить последнюю, сколько уточнить особенности построения теорий в рамках т.н. «синтетических глобальных программ».

Согласно устоявшимся в философии науки представлениям, основное достоинство обычной научной теории – ее способность «предвосхищать» (anticipate) новые научные факты, которые еще не наблюдались, обеспечивая «эмпирически-прогрессивный сдвиг решаемых проблем». Но перед синтетической теорией стоит гораздо более сложная и амбициозная задача: объединить не факты, а теории. Поэтому ее достоинство – в предвосхищении не столько фактов, сколько теорий, в приспособлении к новым теоретическим подходам, в способности эти подходы ассимилировать, «включить в себя», пусть даже в существенно преобразованном виде. При этом эти ассимилированные подходы продолжают «жить» в рамках нового теоретического языка, не утратив способности предсказывать свои собственные экспериментальные «факты».

Например, как отмечал в известном предисловии к изданному в Лондоне первому сборнику своих работ по «электрическим волнам» Генрих Герц, «с самого начала теория Максвелла превосходила все другие в элегантности и в изобилии отношений между различными явлениями, которые она включала. Вероятность этой теории, и, следовательно, число ее сторонников, увеличивалось из года в год» (Hertz 1893, p.19).

Это «изобилие отношений», с нашей точки зрения, и было обусловлено тем, что фактически Максвелл синтезировал не только отдельные результаты, не только математические формулы и экспериментальные данные, но и «твердые ядра», и даже «эвристики» встретившихся исследовательских программ. Но смог он это сделать потому, что выдвинул в качестве объединяющего начала идею, носившую, в отличие от программы Ампера-Вебера, не «деревянный» онтологический, а гибкий (flexible), кантианский, антинатурфилософский, подчеркнуто эпистемологический характер. Для Максвелла последним «первокирпичиком» физической реальности был отнюдь не эфир, из которого надо было тщательно конструировать как поля, так и заряды, не «поле» и тем более не непосредственное «действие на расстоянии». И это действие, и «несжимаемая жидкость», и «вихри в эфире», и «поля» для него были лишь модельными представлениями, в лучшем случае способными лишь «навести» (inductio) на правильные математические соотношения.

С репрезентационной точки зрения (т.н. «теория отражения») электромагнитных феноменов все эти гидродинамические модели были лишь жалкими и заранее обреченными на неудачу попытками описать неописуемое – «вещи в себе», «природу» электрических и магнитных явлений. Напротив, целью своей программы Максвелл поставил нахождение эмпирически-содержательных математических отношений между базисными объектами электродинамики, т.е. создание самосогласованной системы уравнений электромагнитного поля.

Неслучайно в своих лекциях, посвященных максвелловской электродинамике, даже такой известный реалист (и борец с освальдовским энергетизмом) как Людвиг Больцман одобрил точку зрения Герца, согласно которой электричество – «это мыслительный конструкт, служащий для изображения интегралов определенных уравнений» (цит. по: Buchwald, 1994, p. 258). Именно поэтому как только Максвелл получил свои уравнения из весьма и весьма сомнительных модельных представлений и как только он убедился в самосогласованности своей системы, он тут же стал пытаться переполучить свои уравнения из более абстрактного и надежного лагранжева формализма.

Страница 12