Космос. Иллюстрированная история астрономии и космологии - стр. 61
41
Серия гиппопед. Для каждой из планетных моделей Евдокса требовалась только одна гиппопеда, но мы можем убедиться в том, как, выбирая из этого ассортимента, он имел возможность дать объяснение широкому спектру движений как по широте, так и по долготе.
Именно его интерпретация прямого и попятного движения планет придала вращающимся сферам Евдокса вид канонической модели. Далее он демонстрирует, каким образом точка может описывать фигуру в виде восьмерки, которая, в свою очередь, переносится по небу более длительным планетным движением, находясь более или менее в пределах зодиака. Чтобы получить эту фигуру (гиппопеду), он просто берет пару сфер, одна из которых вращается в одном направлении, а другая – в противоположном направлении с той же скоростью вокруг оси первой сферы, не совпадающей с осью ее собственной (второй) сферы. Для наглядности на ил. 41 изображены десять обсуждаемых здесь математических кривых, соответствующих различным углам наклона двух упомянутых осей. Теперь нужно рассмотреть движение планеты вдоль этой ∞-образной траектории, развернув его во времени. Нетрудно представить, каким образом перенос ее вдоль зодиака (или в близкой от него области) будет время от времени давать попятное движение при обращении вокруг оси, расположенной под прямым углом к длине гиппопеды. К этому третьему движению необходимо добавить суточное вращение неба, так называемое «вращение неподвижных звезд».
42
Общий характер планетной траектории по Евдоксу; качественно допустимый, но неосуществимый в реальности
Если не принимать во внимание это третье вращение, то общий вид траектории движения будет таким, как показано на ил. 42; рисунок точно воспроизводит форму кривой, но параметры скорости и наклона осей выбраны на нем произвольно. Мы отложим на время вопрос о точном воспроизведении планетных движений, как они наблюдаются на самом деле.
Применяя такую аппроксимацию к движению планет, по крайней мере качественно, можно свести кажущееся хаотичное перемещение к закономерному. Это открытие, без сомнения, вызвало восторг у Платона. Однако какую цель ставил перед собой сам Евдокс? Есть все основания полагать, что восхищение, которое вызвало у греков предложенное им объяснение, относилось не столько к предсказательной силе теории, сколько к ее геометрическим достоинствам. Для оценки реального характера достижений Евдокса необходимо хотя бы в общих чертах воспроизвести ее геометрическую реконструкцию, предложенную в 1870‐х гг. талантливым итальянским астрономом Джованни Вирджинио Скиапарелли. Используя известные теоремы греческой геометрии, уже употреблявшиеся во времена Евдокса, он показал, что гиппопеда является линией пересечения цилиндра со сферой, на которой лежит эта кривая. Цилиндр при этом, как предполагается, изнутри касается сферы (см. ил. 43).
43
Гиппопеда как кривая, получающаяся при пересечении сферы и цилиндра, касающегося ее изнутри. Буквенные обозначения соответствуют приведенным на ил. 44.