Размер шрифта
-
+

Космос. Иллюстрированная история астрономии и космологии - стр. 51


ВАВИЛОНСКАЯ ПЛАНЕТНАЯ ТЕОРИЯ

Мы уже видели, насколько важен был интерес к горизонтным событиям для выработки общих правил, легших в основу таблиц с материалами наблюдений Венеры времен Амми-цадуки. Интересно заметить, что, когда вавилоняне анализировали особенности первого и последнего, а также вечернего и утреннего появлений, они рассматривали их как не связанные друг с другом явления. Как будто бы каждый из этих объектов обладал собственным существованием, располагаясь на эклиптике. Рассмотрим, например, точки, обозначенные на графике Меркурия как FM (см. ил. 38 выше). Если взять большое количество таких точек и рассмотреть их независимо от прочих, то они образуют более или менее прямую линию, параллельную графику движения Солнца, но эта линия не будет идеально ровной. Для расчета отклонения от этого (в нашем представлении) прямолинейного графика вавилоняне использовали ту же арифметическую методику, которую они применяли в отношении Солнца и Луны. Если использовать графический подход, то суть проблемы заключается в том, чтобы разбить получившуюся линию на сегменты, или, другими словами, найти точки разрыва и градиенты соответствующих компонентов. Вавилоняне, похоже, выражали эти градиенты (угловые скорости) посредством отношения целых чисел и делали это следующим образом: «Меркурий совершает 1513 явлений за 480 лет». Или, ссылаясь на вторичный, более понятный нам результат: «Меркурий восходит 2673 раза за 848 лет».

Найти такие соотношения не так-то просто, и то, что вавилоняне были связаны по рукам и ногам лунным календарем, еще более осложняло ситуацию, поскольку планетные периоды, безусловно, не имели ничего общего с движением Луны. Тем не менее это не имело такого уж большого значения, поскольку, хотя они и не выражали даты в сутках, применялась другая единица – одна тридцатая часть среднего синодического месяца. Сегодня ее обычно называют титхи (слово, пришедшее из поздней индуистской астрономии, где использовалась та же единица). По продолжительности титхи очень близки к суткам. Лунное движение замысловатым образом варьируется, но поскольку титхи по определению являются средней величиной, они, в принципе, вполне могут быть использованы в хорошо разработанной астрономической системе. Нельзя сказать, что эта единица была оптимальным выбором с точки зрения астрономии, однако она обладала очевидными преимуществами для тех, чья религия требовала обращения к древнему лунно-солнечному календарю.

Помимо совокупности правил, характеризующих явления типа FM, были найдены аналогичные правила для явлений LM, FE и LE. Общий принцип заключался в нахождении величин (долгот и времен, измеряемых в титхи), прибавляемых к исходным данным (для FM) для получения последующих явлений. Итоговый график, посредством которого мы можем воспроизвести эти арифметические преобразования, является вполне приемлемой аппроксимацией синусоидальной формы приведенных выше графиков.

Одним из наиболее изощренных элементов этих упражнений стало внесение в вычислительные схемы определенных «феноменов», на деле не поддававшихся наблюдению. Лучшей аналогией, объясняющей эту ситуацию, по всей видимости, является пример с полнолуниями. Точный момент этого явления наступает большей частью тогда, когда Луна находится под горизонтом, но расчеты предсказывали его вне зависимости от того, была она видна или нет. Другие, уже рассмотренные нами, «феномены» (

Страница 51