Как не ошибаться. Сила математического мышления - стр. 33
С другой стороны, мне кажется, что в современном мире вполне можно отказаться от некоторых алгоритмов. Например, нам нет необходимости учить студентов извлекать квадратные корни вручную или в уме (хотя второй из этих двух навыков, говорю вам по собственному опыту, можно использовать в качестве замечательного фокуса на вечеринке в кругу яйцеголовых). Калькулятор – не менее полезный инструмент, над созданием которого кто-то упорно трудился; мы также должны использовать этот инструмент, когда того требует ситуация! Меня даже не интересует, могут ли мои студенты разделить 430 на 12 посредством деления столбиком. Меня на самом деле волнует лишь одно: они должны мысленно определить, что ответ немногим больше 35 – тогда я буду спокоен, что у них прекрасно развиты арифметическое мышление и представление о числах.
Конец ознакомительного фрагмента.